基于玻璃通孔的射頻集成無源器件技術(shù)
發(fā)布時(shí)間:2018-10-25 責(zé)任編輯:wenwei
【導(dǎo)讀】當(dāng)前移動(dòng)設(shè)備和物聯(lián)網(wǎng)設(shè)備市場正經(jīng)歷著史無前例的高速增長。盡管數(shù)字電路在摩爾定律的驅(qū)動(dòng)下繼續(xù)增加著集成度,但射頻電路卻無法按相同比例減小尺寸。因此射頻電路尤其是無源器件部分的進(jìn)一步集成,已經(jīng)日益成為系統(tǒng)小型化的關(guān)鍵。為了滿足不斷增長的需求、減小尺寸和成本、增加功能,集成無源器件(IPD)技術(shù)已成為射頻前端設(shè)計(jì)的一種可行性技術(shù)?,F(xiàn)如今,它已經(jīng)從低溫共燒陶瓷(LTCC)發(fā)展到薄膜技術(shù),例如使用高阻硅(HRSi)或玻璃基板。
近來,玻璃通孔技術(shù)被視為實(shí)現(xiàn)集成、低成本和高性能無源器件最有前途的技術(shù)之一。與二維平面電感相比,采用TGV結(jié)構(gòu)的三維電感具有更好的品質(zhì)因數(shù)。與硅相比,玻璃的介電常數(shù)較低,電阻率較高,因而具有較好的高頻性能。諸如使用TGV構(gòu)建的濾波器和雙工器之類的無源器件,在確保較小的帶內(nèi)插損和較大的帶外抑制能力的同時(shí),還能在尺寸上做小。
本文將通過比較TGV電感與LTCC、HRSi和玻璃基板上的電感來演示TGV的性能,并在系統(tǒng)層次上也進(jìn)行了類似的比較。利用TGV、LTCC、HRSi和玻璃,我們分別設(shè)計(jì)了一種載波聚合(CA)雙工器,從而比較它們的性能,如IL、隔離和抑制。我們還將并從TGV工藝角度研究TGV性能的進(jìn)一步提高的可能性。
電感在TGV、LTCC、HRSi和玻璃下的比較
電感分別采用LTCC、TGV、平面HRSi和平面玻璃進(jìn)行了設(shè)計(jì)。為了公平比較,我們制作了三組電感,每組具有相同的電感值和尺寸。如表1所示,TGV電感在品質(zhì)因數(shù)(Q)和自諧振頻率(SRF)方面具有最佳性能。
表1 電感性能比較
表2 電感性能示意圖
TGV、LTCC、HRSi和玻璃雙工器的比較
載波聚合是有效利用頻譜并擴(kuò)展數(shù)據(jù)帶寬的重要技術(shù)。越來越多的頻譜被聚合,包括ISM頻段,以進(jìn)一步提高數(shù)據(jù)吞吐量。這給射頻前端在這些分離的頻帶上同時(shí)運(yùn)行帶來了挑戰(zhàn)。多路復(fù)用天線是讓緊湊型射頻前端模塊(RF FEM)的尺寸在不同載體上運(yùn)行的解決方案之一。
我們利用TGV、LTCC、HRSi和玻璃分別設(shè)計(jì)了一種CA雙工器。設(shè)計(jì)中使用了100um直徑的和300um深度的TGV。與LTCC器件相比,TGV器件具有更小的尺寸和相似的性能,并且還可以使用更大的徑深比來進(jìn)一步改進(jìn)。
表3 雙工器性能比較
圖1 TGV雙工器性能示意圖
TGV工藝對(duì)性能的影響
為了獲得更好的IPD,我們不斷努力實(shí)現(xiàn)小而深的通孔金屬化、更緊密的通孔間距、更低的玻璃基板介電常數(shù)及層狀2D模式的兼容性,從而進(jìn)一步改善TGV。我們?cè)O(shè)計(jì)了幾款采用不同的TGV徑深比的雙工器來比較高徑深比TGV的尺寸優(yōu)勢。
表4 不同TGV徑深比的雙工器
結(jié)論
本文對(duì)TGV、LTCC、HRSi、glass等多種IPD技術(shù)進(jìn)行了綜合研究。無論是電感還是雙工器的比較表明,TGV技術(shù)在射頻應(yīng)用中具有廣闊的應(yīng)用前景。除此之外,我們還研究了TGV工藝對(duì)性能的影響,并指出了今后TGV工藝發(fā)展的方向。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
- 機(jī)電繼電器的特性及其在信號(hào)切換中的選型和應(yīng)用
- 雙向電源設(shè)計(jì)的優(yōu)點(diǎn)
- 利用兩個(gè)元件實(shí)現(xiàn) L 型網(wǎng)絡(luò)阻抗匹配
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚(yáng)高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個(gè)人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器