深入了解差動(dòng)放大器
發(fā)布時(shí)間:2020-05-03 來(lái)源:Harry Holt 責(zé)任編輯:wenwei
【導(dǎo)讀】經(jīng)典的四電阻差動(dòng)放大器似乎很簡(jiǎn)單,但其在電路中的性能不佳。本文從實(shí)際生產(chǎn)設(shè)計(jì)出發(fā),討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。
大學(xué)里的電子學(xué)課程說(shuō)明了理想運(yùn)算放大器的應(yīng)用,包括反相和同相放大器,然后將它們進(jìn)行組合,構(gòu)建差動(dòng)放大器。圖 1 所示的經(jīng)典四電阻差動(dòng)放大器非常有用,教科書(shū)和講座40多年來(lái)一直在介紹該器件。
圖 1. 經(jīng)典差動(dòng)放大器
該放大器的傳遞函數(shù)為:
(1)
若R1 = R3 且R2 = R4,則公式 1 簡(jiǎn)化為:
(2)
這種簡(jiǎn)化可以在教科書(shū)中看到,但現(xiàn)實(shí)中無(wú)法這樣做,因?yàn)殡娮栌肋h(yuǎn)不可能完全相等。此外,基本電路在其他方面的改變可 產(chǎn)生意想不到的行為。下列示例雖經(jīng)過(guò)簡(jiǎn)化以顯示出問(wèn)題的本質(zhì),但來(lái)源于實(shí)際的應(yīng)用問(wèn)題。
CMRR
差動(dòng)放大器的一項(xiàng)重要功能是抑制兩路輸入的共模信號(hào)。如圖1 所示,假設(shè)V2 為 5 V,V1 為 3 V,則 4V為共模輸入。V2 比共模電壓高 1 V,而V1 低 1 V。二者之差為 2 V,因此R2/R1的"理想"增益施加于 2 V。如果電阻非理想,則共模電壓的一部分將被差動(dòng)放大器放大,并作為V1 和V2 之間的有效電壓差出現(xiàn)在VOUT,無(wú)法與真實(shí)信號(hào)相區(qū)別。差動(dòng)放大器抑制這一部分電壓的能力稱為共模抑制(CMR)。該參數(shù)可以表示為比率的形式(CMRR),也可以轉(zhuǎn)換為分貝(dB)。
在 1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定運(yùn)算放大器為理想運(yùn)算放大器,則共模抑制可以表示為:
(3)
其中,Ad為差動(dòng)放大器的增益, t 為電阻容差。因此,在單位增益和 1%電阻情況下,CMRR等于 50 V/V(或約為 34 dB);在 0.1%電阻情況下,CMRR等于 500 V/V(或約為 54 dB)—— 甚至假定運(yùn)算放大器為理想器件,具有無(wú)限的共模抑制能力。若運(yùn)算放大器的共模抑制能力足夠高,則總CMRR受限于電阻匹配。某些低成本 運(yùn)算放大器具有 60 dB至 70 dB的最小CMRR,使計(jì)算更為復(fù)雜。
低容差電阻
第一個(gè)次優(yōu)設(shè)計(jì)如圖 2 所示。該設(shè)計(jì)為采用OP291 的低端電流檢測(cè)應(yīng)用。R1 至R4 為分立式 0.5%電阻。由Pallás-Areny文章中的公式可知,最佳CMR為 64 dB。幸運(yùn)的是,共模電壓離接地很近,因此CMR并非該應(yīng)用中主要誤差源。具有 1%容差的電流檢測(cè)電阻會(huì)產(chǎn)生 1%誤差,但該初始容差可以校準(zhǔn)或調(diào)整。然而,由于工作范圍超過(guò) 80°C,因此必須考慮電阻的溫度系數(shù)。
圖 2. 具有高噪聲增益的低端檢測(cè)
針對(duì)極低的分流電阻值,應(yīng)使用 4 引腳開(kāi)爾文檢測(cè)電阻。采用高精度 0.1 Ω電阻,并以幾十分之一英寸的PCB走線直接連接該電阻很容易增加 10 mΩ,導(dǎo)致 10%以上的誤差。但誤差會(huì)更大,因?yàn)镻CB上的銅走線溫度系數(shù)超過(guò) 3000 ppm。
分流電阻值必須仔細(xì)選擇。數(shù)值更高則產(chǎn)生更大的信號(hào)。這是 好事,但功耗(I2R) 也會(huì)隨之增加,可能高達(dá)數(shù)瓦。采用較小的 數(shù)值(mΩ級(jí)別),則線路和PCB走線的寄生電阻可能會(huì)導(dǎo)致較 大的誤差。通常使用開(kāi)爾文檢測(cè)來(lái)降低這些誤差??梢允褂靡?個(gè)特殊的四端電阻(比如Ohmite LVK系列),或者對(duì)PCB布局 進(jìn)行優(yōu)化以使用標(biāo)準(zhǔn)電阻,如"改進(jìn)低值分流電阻的焊盤(pán)布局, 優(yōu)化高電流檢測(cè)精度一文中所述。若數(shù)值極小,可以使用PCB 走線,但這樣不會(huì)很精確,如" PCB走線的直流電阻 "一文中所述。
商用四端電阻(比如Ohmite或Vishay的產(chǎn)品)可能需要數(shù)美元或更昂貴,才能提供 0.1%容差和極低溫度系數(shù)。進(jìn)行完整的誤差預(yù)算分析可以顯示如何在成本增加最少的情況下改善精度。
有關(guān)無(wú)電流流過(guò)檢測(cè)電阻卻具有較大失調(diào)(31mV)的問(wèn)題,是"軌到軌"運(yùn)算放大器無(wú)法一路擺動(dòng)到負(fù)電源軌(接地)引起 的。術(shù)語(yǔ)"軌到軌"具有誤導(dǎo)性:輸出將會(huì)靠近電源軌——比經(jīng)典發(fā)射極跟隨器的輸出級(jí)要近得多——但永遠(yuǎn)不會(huì)真正到達(dá)電源軌。軌到軌運(yùn)算放大器具有最小輸出電壓VOL,數(shù)值等 于VCE(SAT)或RDS(ON)× ILOAD,如"MT-035:運(yùn)算放大器輸入、輸出、單電源和軌到軌問(wèn)題" "所述。若失調(diào)電壓等于 1.25 mV,噪聲增益等于 30,則輸出等于:1.25 mV × 30 = ±37.5 mV(由于存在VOS,加上VOL導(dǎo)致的 35 mV)。根據(jù)VOS極性不同,無(wú)負(fù)載電流的情況下輸出可能高達(dá) 72.5 mV。若VOS 最大值為 30µV,且VOL 最大值為 8 mV,則現(xiàn)代零漂移放大器(如AD8539)可將總誤差降低至主要由檢測(cè)電阻所導(dǎo)致的水平。
另一個(gè)低端檢測(cè)應(yīng)用
另一個(gè)示例如圖 3 所示。該示例具有較低的噪聲增益,但它使 用 3 mV失調(diào)、10-µV/°C失調(diào)漂移和 79 dB CMR的低精度四通道運(yùn)算放大器。在 0 A至 3.6 A范圍內(nèi),要求達(dá)到±5 mA精度。若采用±0.5%檢測(cè)電阻,則要求的±0.14%精度便無(wú)法實(shí)現(xiàn)。若使用 100 mΩ電阻,則±5 mA電流可產(chǎn)生±500 µV壓降。不幸的是,運(yùn)算放大器隨溫度變化的失調(diào)電壓要比測(cè)量值大十倍。哪怕VOS調(diào)整為零,50°C的溫度變化就會(huì)耗盡全部誤差預(yù)算。若噪聲增益為 13,則VOS的任何變化都將擴(kuò)大 13 倍。為了改善性能,應(yīng)使用零漂移運(yùn)算放大器(比如AD8638, ADA4051, 或ADA4528、薄膜電阻陣列以及精度更高的檢測(cè)電阻。
圖 3. 低端檢測(cè),示例 2
高噪聲增益
圖 4 中的設(shè)計(jì)用來(lái)測(cè)量高端電流,其噪聲增益為 250。OP07C運(yùn) 算放大器的VOS最大額定值為 150 µV。最大誤差為 150 µV × 250 = 37.5 mV。為了改善性能,采用ADA4638 零漂移運(yùn)算放大器。該器件在–40°C至+125°C溫度范圍內(nèi)的額定失調(diào)電壓為 12.5 µV。然而,由于高噪聲增益,共模電壓將非常接近檢測(cè)電阻兩端的電壓。OP07C的輸入電壓范圍(IVR)為 2 V,這表示輸入電壓必須至少比正電軌低 2 V。對(duì)于ADA4638 而言,IVR = 3 V。
圖 4. 高端電流檢測(cè)
單電容滾降
圖 5 中的示例稍為復(fù)雜。目前為止,所有的等式都針對(duì)電阻而言;但更準(zhǔn)確的做法是,它們應(yīng)當(dāng)將阻抗考慮在內(nèi)。在加入電容的情況下(無(wú)論是故意添加的電容或是寄生電容),交流CMRR均取決于目標(biāo)頻率下的阻抗比。若要滾降該示例中的頻率響應(yīng),則可在反饋電阻兩端添加電容C2,如通常會(huì)在反相運(yùn)算放大器配置中做的那樣。
圖 5. 嘗試創(chuàng)建低通響應(yīng)
如需匹配阻抗比Z1 = Z3 和Z2 = Z4,就必須添加電容C4。市場(chǎng)上很容易就能買(mǎi)到 0.1%或更好的電阻,但哪怕是 0.5%的電容售價(jià)都要高于 1 美元。極低頻率下的阻抗可能無(wú)關(guān)緊要,但電 容容差或PCB布局產(chǎn)生的兩個(gè)運(yùn)算放大器輸入端 0.5 pF的差額可導(dǎo)致 10 kHz時(shí)交流CMR下降 6 dB。這在使用開(kāi)關(guān)穩(wěn)壓器時(shí)顯得尤為重要。
單芯片差動(dòng)放大器(如AD8271, AD8274,或AD8276)具有好 得多的交流CMRR性能,因?yàn)檫\(yùn)算放大器的兩路輸入處于芯片上的可控環(huán)境下,且價(jià)格通常較分立式運(yùn)算放大器和四個(gè)精密電阻更為便宜。
運(yùn)算放大器輸入端之間的電容
為了滾降差動(dòng)放大器的響應(yīng),某些設(shè)計(jì)人員會(huì)嘗試在兩個(gè)運(yùn)算放大器輸入端之間添加電容C1 以形成差分濾波器,如圖 6 所示。這樣做對(duì)于儀表放大器而言是可行的,但對(duì)于運(yùn)算放大器卻不可行。VOUT將會(huì)通過(guò)R2 而上下移動(dòng),形成閉合環(huán)路。在直流時(shí),這不會(huì)產(chǎn)生任何問(wèn)題,并且電路的表現(xiàn)與等式 2 所描 述的相一致。隨著頻率的增加,C1 電抗下降。進(jìn)入運(yùn)算放大器輸入端的反饋降低,從而導(dǎo)致增益上升。最終,運(yùn)算放大器會(huì)在開(kāi)環(huán)狀態(tài)下工作,因?yàn)殡娙菔馆斎攵搪贰?/div>
圖 6. 輸入電容降低高頻反饋
在波特圖上,運(yùn)算放大器的開(kāi)環(huán)增益在–20dB/dec處下降,但噪聲增益在+20 dB/dec處上升,形成–40dB/dec交越。正如控制系統(tǒng)課堂上所學(xué)到的,它必然產(chǎn)生振蕩。一般而言,永遠(yuǎn)不要在運(yùn)算放大器的輸入端之間使用電容(極少數(shù)情況下例外,但本文不作討論)。
結(jié)論
無(wú)論是分立式或是單芯片,四電阻差動(dòng)放大器的使用都非常廣泛。為了獲得穩(wěn)定且值得投入生產(chǎn)的設(shè)計(jì),應(yīng)仔細(xì)考慮噪聲增益、輸入電壓范圍、阻抗比和失調(diào)電壓規(guī)格。
參考電路
Kitchin, Charles and Counts, Lew. 儀表放大器應(yīng)用工程師指南(第三版)。2006年。
O''''''''''''''''Sullivan, Marcus. ".改進(jìn)低值分流電阻的焊盤(pán)布局,優(yōu)化高電 流檢測(cè)精度。" 模擬對(duì)話第46卷第2號(hào),2012年。
Pallás-Areny, Ramón and Webster, John G. Common Mode Rejection Ratio in Differential Amplifiers(差分放大器的共模抑制比). IEEE Transactions On Instrumentation and Measurement第40卷,第4期,1991年8月,第669頁(yè)至676頁(yè)。
MT-035 Tutorial. 運(yùn)算放大器輸入、輸出、單電源和軌到軌問(wèn)題。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 模擬信號(hào)鏈的設(shè)計(jì)注意事項(xiàng)
- 熱烈祝賀 Andrew MENG 晉升為 ASEAN(東盟)市場(chǎng)經(jīng)理!
- 邁向更綠色的未來(lái):GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
PLC
Premier Farnell
Recom
RF
RF/微波IC
RFID
rfid
RF連接器
RF模塊
RS
Rubycon
SATA連接器
SD連接器
SII
SIM卡連接器
SMT設(shè)備
SMU
SOC
SPANSION
SRAM
SSD
ST
ST-ERICSSON
Sunlord
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測(cè) 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉