靜態(tài)電流還會(huì)受到溫度的影響。如圖2.180為ADA4807靜態(tài)電流與溫度關(guān)系,供電電源分別為±1.5V、±2.5V、±5V時(shí),靜態(tài)電流都隨溫度上升而變大。
圖2.180 ADA4807靜態(tài)電流與溫度
靜態(tài)功耗(Quiescent Power,Pq)是指放大器輸出不驅(qū)動(dòng)負(fù)載時(shí),內(nèi)部電路所消耗的功耗,如式2-100。
其中,Vsy為放大器的供電范圍,即Vcc與Vee之差。
如圖2.4,25℃環(huán)境中,ADA4077使用±15V供電,靜態(tài)電流的典型值為400μA。代入式2-99,通過(guò)計(jì)算靜態(tài)功耗為12mW。使用LTspice進(jìn)行瞬態(tài)分析之后,計(jì)算ADA4077靜態(tài)功率如圖2.181。
圖2.181 ADA4077靜態(tài)功耗仿真電路
功率計(jì)算結(jié)果如圖2.182,ADA4077靜態(tài)功耗的平均值為10.84mW,接近ADA4077靜態(tài)功耗的計(jì)算值。
圖2.182 ADA4077瞬態(tài)分析的靜態(tài)功率計(jì)算結(jié)果
短路電流、輸出電流與輸出級(jí)晶體管功耗
短路電流(Short-Circuit Current,Isc)定義為放大器輸出與地、電源的兩個(gè)端電壓之一或者特定電位短接時(shí),放大器可以輸出的最大電流值。
輸出電流(Output Current,Iout)定義為放大器輸出端所取出的電流值。輸出電流值必須小于短路電流值,放大器才能工作正常。放大器輸出電流有兩種形式,分別是流出電流“Source”為正值,與灌入電流“sink”為負(fù)值。二者參數(shù)值可以不相等,如圖2.160, ADA4807流出電流50mA,灌入電流為60mA。
圖2-160 ADA4807輸出特性
輸出級(jí)晶體管功耗定義為放大器在指定輸出電流Iout網(wǎng)絡(luò)中,放大器內(nèi)部所消耗的功耗。如圖2.183。
圖2.183 放大器直流功耗分析電路
放大器流出的電流Iout,為式2-101。
放大器自身消耗的電壓落差,為式2-102。
通過(guò)式2-101與式2-102,計(jì)算輸出級(jí)晶體管功耗,為式2-103。
其中,RL為放大器輸出端的等效電阻,阻值為R1與Rf阻值之和,與負(fù)載電阻Rload的并聯(lián)值。
如圖2.183,根據(jù)電路配置可知Vout為1V,RL為1.333KΩ,代入是2-102計(jì)算ADA4077直流功耗為10.5mW。
熱 阻
芯片熱阻定義為熱量在從晶圓結(jié)點(diǎn)傳導(dǎo)至環(huán)境空氣遇到的阻力。表示為θJA,即結(jié)至環(huán)境熱阻,單位是℃/W。進(jìn)一步分析晶圓結(jié)點(diǎn)至環(huán)境空氣熱傳導(dǎo)過(guò)程,如圖2.185。
圖2.185 芯片熱力學(xué)模型
PN節(jié)總功耗(Pd)導(dǎo)致溫度上升將向芯片的封裝進(jìn)行熱傳遞,過(guò)程中遇到的阻力為節(jié)至外殼的熱阻θJC。外殼溫度上升將周?chē)h(huán)境進(jìn)行熱傳遞,過(guò)程中遇到的阻力為外殼至環(huán)境的熱阻θCA。散熱過(guò)程如式2-104。
如圖2.186,ADA4077不同封裝的節(jié)至外殼的熱阻,外殼至環(huán)境的熱阻。
圖2.186 ADA4077不同封裝熱阻
如果在室溫25℃條件下,選擇8-Lead MSOP封裝ADA4077實(shí)現(xiàn)圖2.183電路,輸出級(jí)晶體管功耗為10.5mW,靜態(tài)功耗為12mW,θJC為44℃/W,θCA為190℃/W,代入式2-104計(jì)算芯片內(nèi)部結(jié)溫為:
如上,精密測(cè)量電路的放大器功耗影響通常較小,而高速采集電路的放大器與ADC功耗較大,影響就不能忽視,需要根據(jù)應(yīng)用電路具體分析。另外,不論是精密測(cè)量,還是高速采集電路,還應(yīng)考慮板卡中電源,主控等高功耗芯片對(duì)電路工作溫度的影響,才能確保所使用的參數(shù)與硬件實(shí)際工作環(huán)境相符合。