【導(dǎo)讀】基本的Buck轉(zhuǎn)換器拓?fù)涠际且粯拥?,但控制該轉(zhuǎn)換器工作的方法卻是多種多樣的,不同的方法帶來(lái)不同的特性。與之對(duì)應(yīng)的是現(xiàn)實(shí)中的負(fù)載特性也各自不同,如何將不同的轉(zhuǎn)換器拓?fù)浜透鞣N不同的應(yīng)用對(duì)應(yīng)起來(lái)呢?了解各種拓?fù)涞幕咎匦院拖拗疲宄约旱膽?yīng)用需求,這是實(shí)現(xiàn)正確選擇的基本條件。
一、 概述
基本的 Buck 轉(zhuǎn)換器拓?fù)涫沁@樣的:
圖一、Buck轉(zhuǎn)換器的基本拓?fù)?/div>
在此拓?fù)渲?,高端功率開(kāi)關(guān)S1和低端功率開(kāi)關(guān)S2輪流導(dǎo)通,由此形成的斬波信號(hào)經(jīng)電感L和輸出電容COUT濾波以后形成輸出電壓,輸出電壓VOUT的高低由S1導(dǎo)通時(shí)間的占空比所決定。
一個(gè)完整的Buck系統(tǒng)需要對(duì)某些信號(hào)進(jìn)行檢測(cè)以確定如何對(duì)開(kāi)關(guān)的占空比進(jìn)行控制,而在電路中可供檢測(cè)作為Buck控制系統(tǒng)的反饋信號(hào)是多種多樣的,控制開(kāi)關(guān)占空比的方法也有很多種。現(xiàn)實(shí)中的負(fù)載也各自具有獨(dú)特的個(gè)性,它們對(duì)為之供電的Buck 轉(zhuǎn)換器的特性要求也不一樣,這就導(dǎo)致了各種不同控制架構(gòu)的出現(xiàn)。
立锜科技的DC/DC產(chǎn)品目錄中有多種不同類型的Buck轉(zhuǎn)換器,它們分別使用了不同的控制架構(gòu)。最傳統(tǒng)的是電流模式(Current Mode, CM)和固定導(dǎo)通時(shí)間(Constant-On-Time, COT)模式,還有結(jié)合了兩者特性的電流模式固定導(dǎo)通時(shí)間(Current Mode Constant-On-Time, CMCOT)模式,以及改進(jìn)后的固定導(dǎo)通時(shí)間(Advanced Constant-On-Time, ACOT™)模式。這些不同的控制架構(gòu)實(shí)現(xiàn)方法不同,各自具有不同的特性,其優(yōu)勢(shì)和限制也是各自不同的。
面對(duì)如此繁多的控制架構(gòu),我們應(yīng)該怎樣針對(duì)自己應(yīng)用的需要選擇合適的架構(gòu)呢?讓我們從了解開(kāi)始。
二、 電流模式(Current Mode, CM)
最傳統(tǒng)的電流模式Buck轉(zhuǎn)換器通過(guò)對(duì)MOSFET功率開(kāi)關(guān)的導(dǎo)通時(shí)間進(jìn)行控制以實(shí)現(xiàn)對(duì)輸出電壓的調(diào)節(jié),它有一個(gè)固定頻率的內(nèi)部時(shí)鐘控制著開(kāi)關(guān)的節(jié)奏,導(dǎo)通時(shí)間的決策依據(jù)來(lái)源于電感峰值電流檢測(cè)信號(hào)和誤差放大器的比較結(jié)果。下面是它的電路拓?fù)浜团c之對(duì)應(yīng)的波形示意圖:
圖二、電流模式Buck轉(zhuǎn)換器電路拓?fù)?/div>
RT8059 是一款封裝為TSOT-23-5的電流模式 Buck 轉(zhuǎn)換器,最高工作電壓為5.5V,輸出電流能力為1A,以1.5MHz的固定頻率工作。這是它的應(yīng)用電路圖:
電流模式控制電路中的誤差放大器能對(duì)輸出電壓的變化做出響應(yīng)。由于輸出電容的存在,負(fù)載電流的急速變化并不能馬上反映到電壓上,它只能逐漸地反映出來(lái),這在誤差放大器中表現(xiàn)為它的輸出信號(hào)的逐漸增加,這個(gè)增加過(guò)程還受到補(bǔ)償電路的抑制,以使得反應(yīng)不至于太過(guò)。
圖三、電流模式Buck轉(zhuǎn)換器的工作波形
這種架構(gòu)的控制回路的帶寬是由誤差放大器進(jìn)行設(shè)定的,一般被限定在遠(yuǎn)小于開(kāi)關(guān)切換工作頻率的水平上。
[page]
RT8059 是一款封裝為TSOT-23-5的電流模式 Buck 轉(zhuǎn)換器,最高工作電壓為5.5V,輸出電流能力為1A,以1.5MHz的固定頻率工作。這是它的應(yīng)用電路圖:
圖四、電流模式Buck轉(zhuǎn)換器的電路實(shí)例
我們給它一個(gè)5V的電壓,讓它的輸出電壓為1.2V,并給它施加一個(gè)在500mA和1A之間快速變化的電流負(fù)載,看看它的輸出電壓變化情況。下圖是測(cè)試波形:
圖五、電流模式Buck轉(zhuǎn)換器的瞬態(tài)響應(yīng)波形
將波形在時(shí)間軸上拉開(kāi)以后,我們可以看到響應(yīng)過(guò)程的細(xì)節(jié):
圖六、電流模式Buck轉(zhuǎn)換器的瞬態(tài)響應(yīng)波形細(xì)節(jié)展開(kāi)
當(dāng)負(fù)載電流從500mA向1A跳變時(shí),輸出電壓下跌的最大幅度是66mV,為額定輸出電壓的5.5%。這種負(fù)載快速變化條件下的輸出電壓變動(dòng)狀況測(cè)試是最能反映一個(gè)電源系統(tǒng)的性能的,因?yàn)檫@是它能遇到的最壞狀況之一。
[page]
電流模式控制電路中的誤差放大器能對(duì)輸出電壓的變化做出響應(yīng)。由于輸出電容的存在,負(fù)載電流的急速變化并不能馬上反映到電壓上,它只能逐漸地反映出來(lái),這在誤差放大器中表現(xiàn)為它的輸出信號(hào)的逐漸增加,這個(gè)增加過(guò)程還受到補(bǔ)償電路的抑制,以使得反應(yīng)不至于太過(guò)。
誤差放大器的輸出的變化并不能馬上表現(xiàn)到開(kāi)關(guān)占空比的變化上,它需要受到時(shí)鐘的同步,只有一個(gè)新的時(shí)鐘周期開(kāi)始時(shí),高端開(kāi)關(guān)才會(huì)被打開(kāi),這個(gè)打開(kāi)過(guò)程直至內(nèi)部的脈動(dòng)信號(hào)幅度超過(guò)誤差放大器輸出信號(hào)幅度以后才會(huì)結(jié)束。較高的誤差放大器信號(hào)輸出導(dǎo)致較高的占空比,從輸入端經(jīng)電感流向輸出端的電流相應(yīng)更高以彌補(bǔ)輸出電流增大帶來(lái)的輸出電壓下降損失,反之亦然。
在穩(wěn)定狀態(tài)下,誤差放大器的輸出電壓是穩(wěn)定不變的,由此導(dǎo)致的占空比也是不變的,我們可在這個(gè)時(shí)候從開(kāi)關(guān)節(jié)點(diǎn)上測(cè)量到穩(wěn)定不變的波形。當(dāng)任何擾動(dòng)加入的時(shí)候,例如輸入電壓發(fā)生了變化,或是負(fù)載電流發(fā)生了變化,前述的動(dòng)態(tài)變化過(guò)程就會(huì)發(fā)生,其最終目的就是將輸出電壓拉回到穩(wěn)定狀態(tài),能用多快的速度將環(huán)境變化的影響消除反映了一個(gè)系統(tǒng)的瞬態(tài)響應(yīng)的速度。
受較窄的系統(tǒng)帶寬的限制,電流模式Buck轉(zhuǎn)換器對(duì)負(fù)載的快速變化的響應(yīng)是比較慢的,所以它的輸出電壓跌落和上沖就會(huì)比較大,恢復(fù)過(guò)程也要需要比較長(zhǎng)的時(shí)間。
電流模式控制器使用了固定的時(shí)鐘信號(hào)來(lái)同步所有的工作過(guò)程,我們看到這種做法是有缺陷的,但此方法對(duì)于某些存在頻率敏感現(xiàn)象的系統(tǒng)是一個(gè)很好的選擇。在有的情況下,我們可能還需要用外部時(shí)鐘信號(hào)來(lái)對(duì)Buck的工作過(guò)程進(jìn)行同步,電流模式支持支種做法,條件是你所選用的器件要提供這樣的接口。
三、 改進(jìn)的固定導(dǎo)通時(shí)間(Advanced Constant-On-Time, ACOTTM)
固定導(dǎo)通時(shí)間(COT)架構(gòu)已經(jīng)存在很久了,也是一種很經(jīng)典的架構(gòu),立锜科技有很多產(chǎn)品采用了這種架構(gòu)。與電流模式比較慢的響應(yīng)速度相比, COT架構(gòu)最大的好處就是它的響應(yīng)速度極快,可以將負(fù)載變化時(shí)的輸出電壓變化降到很低的程度,但它也是有缺陷的。下面的文字翻譯自一款采用ACOTTM控制架構(gòu)的產(chǎn)品規(guī)格書(shū),它陳述了COT架構(gòu)的特性,同時(shí)也說(shuō)明了ACOTTM是怎么回事,可讓我們了解各自的不同。在閱讀文字以前先看看下圖是有利的,這個(gè)圖是關(guān)于ACOTTM的,但忽略掉其中ACOTTM特有的頻率鎖定環(huán)路(Frequency Locked Loop)和虛擬電感電流波形生成電路(PSR)以后的剩余部分就是COT的電路拓?fù)淞恕?/div>
圖七:ACOTTM架構(gòu)Buck轉(zhuǎn)換器的電路拓?fù)?/div>
ACOTTM控制架構(gòu)
當(dāng)負(fù)載電流發(fā)生跳變的時(shí)候,輸出電壓的下跌只有24mV,遠(yuǎn)小于電流模式器件在同樣條件下出現(xiàn)的66mV的變化。當(dāng)然了,它的回復(fù)穩(wěn)定狀態(tài)的時(shí)間也是很短的,下圖顯示了這個(gè)過(guò)程:
COT
任何COT架構(gòu)的核心都是一個(gè)固定導(dǎo)通時(shí)間的單穩(wěn)態(tài)單元。在這里,所謂的固定導(dǎo)通時(shí)間其實(shí)是一個(gè)由反饋電壓比較器所觸發(fā)的預(yù)先定義好的“固定”時(shí)間。這種具有很高魯棒性的安排具有很高的噪聲消除能力,是低占空比應(yīng)用的理想選擇。在每一個(gè)固定時(shí)間的導(dǎo)通狀態(tài)之后,總是有一個(gè)最小關(guān)斷時(shí)間緊隨其后,在這段時(shí)間里,電壓調(diào)節(jié)器不用做出任何調(diào)整決定,這種做法的好處是避免了開(kāi)關(guān)噪聲的影響,因?yàn)槊恳淮伍_(kāi)關(guān)動(dòng)作之后的一段時(shí)間里總是跟隨著嚴(yán)重的噪聲。因?yàn)闆](méi)有固定的時(shí)鐘對(duì)操作進(jìn)行同步控制,當(dāng)負(fù)載發(fā)生突變時(shí),轉(zhuǎn)換電路中的上橋開(kāi)關(guān)幾乎可以立即打開(kāi)讓電感電流迅速增加以滿足負(fù)載上突然出現(xiàn)的需要。
傳統(tǒng)的電流模式或電壓模式的控制架構(gòu)必須監(jiān)控反饋電壓、電流信號(hào)(同時(shí)用于電流限制)以及內(nèi)部的脈動(dòng)信號(hào)和補(bǔ)償信號(hào)來(lái)決定何時(shí)關(guān)閉上橋開(kāi)關(guān)、打開(kāi)同步續(xù)流開(kāi)關(guān)。在進(jìn)行大電流切換的情形下,開(kāi)關(guān)動(dòng)作之后的噪聲是巨大的,要在這種噪聲中準(zhǔn)確地獲取那么多信號(hào)并做出正確的決策是一件非常艱難的事情,這在低占空比應(yīng)用和板子設(shè)計(jì)不太理想的情況下就變得尤為嚴(yán)峻。
由于不需要在噪聲嚴(yán)重的時(shí)間段做出開(kāi)關(guān)切換動(dòng)作的決策,COT架構(gòu)就成了低占空比應(yīng)用和高噪聲應(yīng)用中的首選。然而,傳統(tǒng)的COT控制架構(gòu)仍然因?yàn)槠鋬?nèi)在的某些缺點(diǎn)而不能滿足某些應(yīng)用的需要。例如,很多應(yīng)用需要使開(kāi)關(guān)電源工作在某些特定的頻率范圍內(nèi)以避免和其它敏感電路發(fā)生相互干擾,而在純正的COT控制架構(gòu)中,由于導(dǎo)通時(shí)間是固定的,所以它的開(kāi)關(guān)工作頻率就是變化的。在降壓型開(kāi)關(guān)轉(zhuǎn)換器中,占空比是與輸出電壓成正比、與輸入電壓成反比的,因此,當(dāng)導(dǎo)通時(shí)間固定時(shí),關(guān)斷時(shí)間(緊接著是頻率)就必然是變化的,這樣才能適應(yīng)輸入電壓和輸出電壓的變化。
現(xiàn)代的偽固定頻率COT架構(gòu)通過(guò)讓單穩(wěn)態(tài)電路的導(dǎo)通時(shí)間正比于輸出電壓、反比于輸入電壓,大大提升了COT的性能。在這種方法中,導(dǎo)通時(shí)間被選擇在和一個(gè)理想的固定頻率PWM電路處理類似的輸入、輸出電壓條件下的導(dǎo)通時(shí)間相當(dāng)?shù)臓顟B(tài)下,這樣的結(jié)果是性能被大大地改善了,但開(kāi)關(guān)工作頻率仍然會(huì)隨著輸入電壓和負(fù)載的變化而變化,因?yàn)閬?lái)自開(kāi)關(guān)、電感和其他寄生效應(yīng)的損耗依然在發(fā)生影響。
多數(shù)COT架構(gòu)的另外一個(gè)問(wèn)題是他們需要依賴輸出電容的較大的ESR來(lái)工作,這在遇到體積小、成本低但ESR很低的陶瓷電容時(shí)就不再好用了。這些架構(gòu)需要利用電感電流流過(guò)輸出電容的ESR時(shí)形成的交流電流信息來(lái)運(yùn)作,這有點(diǎn)像是電流模式的控制系統(tǒng)所做的那樣,但陶瓷電容能夠提供的電感電流信息太微弱了,很難讓控制回路能夠穩(wěn)定運(yùn)作,這就像電流模式的控制系統(tǒng)看不到電流信息一樣,它失去了路標(biāo),雖然清楚自己要去哪里,但卻不知道如何邁步。
[page]
ACOTTM控制架構(gòu)
有很多原因可以導(dǎo)致即便將導(dǎo)通時(shí)間正比于輸出電壓、反比于輸入電壓也不能得到好的固定頻率表現(xiàn)的結(jié)果。首先,電流流過(guò)MOSFET開(kāi)關(guān)和電感形成的電壓降會(huì)使得實(shí)際的輸入電壓低于測(cè)量出來(lái)的輸入電壓、實(shí)際的輸出電壓高于測(cè)量出來(lái)的輸出電壓。當(dāng)負(fù)載變化時(shí),負(fù)載電流導(dǎo)致的開(kāi)關(guān)上的電壓降會(huì)導(dǎo)致開(kāi)關(guān)頻率的變化。其次,在輕載情況下,假如電感電流出現(xiàn)負(fù)值、同步續(xù)流開(kāi)關(guān)關(guān)閉和上橋開(kāi)關(guān)導(dǎo)通以容許輸入電壓出現(xiàn)在開(kāi)關(guān)節(jié)點(diǎn)之間的死區(qū)時(shí)間延長(zhǎng),都會(huì)使得有效的導(dǎo)通時(shí)間增加并導(dǎo)致開(kāi)關(guān)頻率出現(xiàn)明顯的下降。
一種降低這些效應(yīng)的方法是測(cè)量實(shí)際的開(kāi)關(guān)工作頻率并將其和預(yù)定的數(shù)據(jù)進(jìn)行比較以確定頻率調(diào)整的方向,其好處是無(wú)需測(cè)量實(shí)際的輸出電壓,因而省去了一個(gè)用于測(cè)量輸出電壓的引線端子。ACOTTM正是采用這種測(cè)量實(shí)際的開(kāi)關(guān)頻率并在反饋回路中調(diào)整導(dǎo)通時(shí)間的方法來(lái)將平均開(kāi)關(guān)工作頻率保持在一個(gè)預(yù)定的范圍之內(nèi)。
為了能和低ESR的陶瓷電容配合起來(lái)穩(wěn)定工作,ACOTTM在IC內(nèi)部使用了一個(gè)虛擬的電感電流脈動(dòng)信號(hào),它代替了通常使用的借助輸出電容的ESR生成的電感電流信號(hào),這個(gè)信號(hào)和其它內(nèi)部補(bǔ)償舉措相結(jié)合優(yōu)化了和低ESR陶瓷電容配合時(shí)的工作表現(xiàn),達(dá)成了穩(wěn)定工作的目的。
ACOTTM單穩(wěn)態(tài)電路的運(yùn)作
ACOTTM的控制邏輯是非常簡(jiǎn)單易懂的,反饋電壓和虛擬電感電流脈動(dòng)信號(hào)相加以后與參考電壓進(jìn)行比較,當(dāng)前者的幅度低于后者時(shí),一次單穩(wěn)態(tài)導(dǎo)通過(guò)程即被觸發(fā)(觸發(fā)信號(hào)在經(jīng)過(guò)一個(gè)與最短截止時(shí)間相等的時(shí)間以后即被自動(dòng)復(fù)位),上橋開(kāi)關(guān)打開(kāi),輸入電壓進(jìn)入開(kāi)關(guān)節(jié)點(diǎn)加到電感上,電感電流即線性增加;經(jīng)過(guò)預(yù)設(shè)的固定導(dǎo)通時(shí)間以后,上橋關(guān)閉,續(xù)流開(kāi)關(guān)打開(kāi),電感電流從最高點(diǎn)開(kāi)始線性降低,與此同時(shí),一個(gè)最短截止時(shí)間單穩(wěn)態(tài)過(guò)程被觸發(fā)以防止另一次導(dǎo)通過(guò)程在開(kāi)關(guān)噪聲持續(xù)期間立即發(fā)生,并使反饋電壓和電流感應(yīng)信號(hào)可以被正確地獲取。最短截止時(shí)間被保持在極短的狀態(tài),其典型值為230ns,這樣可以保證另一次導(dǎo)通過(guò)程可以在需要時(shí)被及時(shí)啟動(dòng),以便滿足負(fù)載的需要。
這段文字已經(jīng)說(shuō)明了 ACOTTM Buck 轉(zhuǎn)換器的特性:極快的瞬態(tài)響應(yīng)速度;可以使用低ESR的MLCC作為輸出電容;平均工作頻率是穩(wěn)定的。請(qǐng)注意它不使用電流檢測(cè)電路和誤差放大器,取而代之的是直接將檢測(cè)到的輸出電壓和虛擬的電感電流脈動(dòng)信號(hào)的和與參考電壓進(jìn)行比較以決定何時(shí)需要喚醒一次導(dǎo)通過(guò)程。下面的圖形是ACOTTM架構(gòu)在穩(wěn)定狀態(tài)和負(fù)載變化情況下的工作波形示意:
圖八、ACOTTM架構(gòu)Buck轉(zhuǎn)換器的工作波形
從中可以看出,當(dāng)負(fù)載變化的時(shí)候,與電流模式在工作頻率固定的情況下通過(guò)改變占空比來(lái)調(diào)節(jié)輸出電壓不一樣的是它改變了工作的頻率,導(dǎo)通脈沖的急劇增加可使它快速地滿足負(fù)載的需要,從而快速將輸出電壓拉回到穩(wěn)定狀態(tài)。
我們同樣選擇一款最高工作電壓為5.5V的ACOTTM架構(gòu)低壓Buck轉(zhuǎn)換器來(lái)測(cè)試它的性能,先來(lái)看看電路圖:
圖九、ACOTTM架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例
這一次選擇的是RT5784A,它是ACOTTM架構(gòu)的,平均工作頻率也是1.5MHz(請(qǐng)注意是平均工作頻率,這是與電流模式不一樣的地方),它的負(fù)載能力是2A,與我們選用的電流模式器件RT8059的負(fù)載能力不一樣,但這并不影響我們的測(cè)試,因?yàn)樨?fù)載電流是由負(fù)載的大小決定的,與負(fù)載能力是兩回事。輸出電壓仍然設(shè)定為相同的1.2V,我們讓負(fù)載電流在0.5A到1A之間跳變,下圖是測(cè)量到的電流波形和輸出電壓變化的波形:
圖十、ACOTTM架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例瞬態(tài)響應(yīng)波形
[page]
當(dāng)負(fù)載電流發(fā)生跳變的時(shí)候,輸出電壓的下跌只有24mV,遠(yuǎn)小于電流模式器件在同樣條件下出現(xiàn)的66mV的變化。當(dāng)然了,它的回復(fù)穩(wěn)定狀態(tài)的時(shí)間也是很短的,下圖顯示了這個(gè)過(guò)程:
圖十一、ACOTTM架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例瞬態(tài)響應(yīng)波形細(xì)節(jié)展開(kāi)
不到一個(gè)微秒,電感電流就已經(jīng)追上了負(fù)載電流的變化,前述的電流模式器件沒(méi)有這么快。
ACOTTM已經(jīng)采取了頻率鎖定電路來(lái)解決它在工作條件變化情況下的工作頻率變化問(wèn)題,它的平均頻率是穩(wěn)定的,但這仍然不能讓它的頻率是固定不變的,也不能使用外部時(shí)鐘來(lái)對(duì)它的動(dòng)作進(jìn)行同步,如果你有相關(guān)的需要,你還是需要考慮使用電流模式的器件。
四、 電流模式固定導(dǎo)通時(shí)間(Current-Mode Constant-On-Time, CMCOT)
對(duì)于某些應(yīng)用來(lái)說(shuō),電流模式比較慢的瞬態(tài)響應(yīng)能力是不能接受的,也不能接受電流模式不能太低的占空比,它們對(duì)于ACOTTM架構(gòu)在面對(duì)負(fù)載快速變化時(shí)的工作頻率的大范圍變化也不能接受,這時(shí)候就可以選擇一個(gè)折中的方案:電流模式固定導(dǎo)通時(shí)間架構(gòu)(CMCOT)。
CMCOT的電路拓?fù)涫沁@樣的:
圖十二:CMCOT架構(gòu)Buck轉(zhuǎn)換器的電路拓?fù)?/div>
上圖中的RT8096A是最高5.5V工作電壓的CMCOT架構(gòu)Buck器件,平均工作頻率為1.5MHz(請(qǐng)注意它的核心是COT的,所以只能談平均工作頻率,這是由頻率鎖定電路設(shè)定的),負(fù)載能力為1A,電路的輸出電壓為1.2V。當(dāng)它的負(fù)載在500mA至1A之間跳變時(shí),其電流波形和輸出電壓的變化狀況是這樣的:
CMCOT Buck轉(zhuǎn)換器的功率開(kāi)關(guān)擁有固定的導(dǎo)通時(shí)間,并通過(guò)對(duì)功率開(kāi)關(guān)關(guān)斷時(shí)間的控制實(shí)現(xiàn)輸出電壓的調(diào)整。這種架構(gòu)中包含了誤差放大器和電流檢測(cè)電路,但對(duì)關(guān)斷時(shí)間的控制依據(jù)是來(lái)源于電感谷值電流的檢測(cè)信號(hào)和誤差放大器的比較結(jié)果。與電流模式相比,這種模式的轉(zhuǎn)換器具有更寬的帶寬,響應(yīng)速度更快。
在DC/DC電路中,每一次的開(kāi)關(guān)切換過(guò)程都對(duì)應(yīng)著電流路徑的變換和開(kāi)關(guān)節(jié)點(diǎn)的電壓變化,這就形成了所謂的噪聲。電流模式架構(gòu)的電流檢測(cè)點(diǎn)是在上橋開(kāi)關(guān)上,那里的電壓比較高,信號(hào)不好處理,其中包含的噪聲也更多更雜更大,正確的信號(hào)要在離開(kāi)關(guān)時(shí)間點(diǎn)比較久的時(shí)候才會(huì)出現(xiàn),這就限制了占空比的最小值。Buck電路的占空比是等于輸出電壓和輸入電壓的比值,輸入電壓越高,輸出電壓越低,所需要的占空比就越低,這就限制了電流模式的使用范圍。當(dāng)工作頻率比較高時(shí),元器件可以實(shí)現(xiàn)小型化,這對(duì)小體積的設(shè)備是非常好的,所以在很多情況下會(huì)有對(duì)高工作頻率的追求,這時(shí)候的工作周期會(huì)很短,低占空比就意味著很短的脈沖時(shí)間,這也會(huì)讓電流模式的使用成為不可能。
同樣幅度的輸出電壓波動(dòng),在輸出電壓比較低的情況下,輸出電壓波動(dòng)所占的比例也較高,稍有不慎就可能使負(fù)載系統(tǒng)進(jìn)入不正常的工作狀態(tài)。隨著業(yè)界對(duì)電子器件在低電壓下工作的研究的深入,我們將要面臨的工作電壓會(huì)越來(lái)越低,傳統(tǒng)的電流模式必將遇到越來(lái)越多的挑戰(zhàn)。電流模式固定導(dǎo)通時(shí)間架構(gòu)能夠兼有電流模式和固定導(dǎo)通時(shí)間架構(gòu)的好處,這在某些情況下是很好的選擇。
圖十三:CMCOT架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例
[page]
上圖中的RT8096A是最高5.5V工作電壓的CMCOT架構(gòu)Buck器件,平均工作頻率為1.5MHz(請(qǐng)注意它的核心是COT的,所以只能談平均工作頻率,這是由頻率鎖定電路設(shè)定的),負(fù)載能力為1A,電路的輸出電壓為1.2V。當(dāng)它的負(fù)載在500mA至1A之間跳變時(shí),其電流波形和輸出電壓的變化狀況是這樣的:
圖十四:CMCOT架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例的瞬態(tài)響應(yīng)波形
輸出電壓的上沖和下墜的幅度都是49mV,這個(gè)數(shù)據(jù)介于已經(jīng)得到的電流模式的65mV和ACOTTM的24mV之間,優(yōu)于電流模式,但又劣于ACOTTM。
再來(lái)看看細(xì)節(jié):
圖十五:CMCOT架構(gòu)Buck轉(zhuǎn)換器的電路實(shí)例的瞬態(tài)響應(yīng)波形細(xì)節(jié)展開(kāi)
圖中顯示在2微秒內(nèi)開(kāi)關(guān)節(jié)點(diǎn)上出現(xiàn)了5個(gè)脈沖,回到前面ACOTTM的波形,我們可以看到它在1微秒內(nèi)打了3個(gè)脈沖,很顯然,在面對(duì)同樣負(fù)載跳變的情況下,這一次的脈沖頻率比較低,也就是說(shuō)CMCOT真的起到了降低頻率變化范圍的效果。
五、 總結(jié)
我們已經(jīng)把幾種不同控制架構(gòu)的實(shí)現(xiàn)方法和各自的基本特性做了比較,也比較了它們的性能表現(xiàn),與實(shí)際的應(yīng)用結(jié)合,我們可以看到:
輸入電壓、輸出電壓和負(fù)載的自然特性在大多數(shù)情況下是決定選擇哪種控制架構(gòu)最合適的關(guān)鍵因素。
具有穩(wěn)定負(fù)載的系統(tǒng)可選擇電流模式 Buck 轉(zhuǎn)換器;為了避開(kāi)某些頻率敏感的頻帶,具有固定工作頻率的電流模式也是最佳的選擇。一些電流模式 Buck 轉(zhuǎn)換器可提供外部時(shí)鐘同步的接口。
那些存在極快速負(fù)載變化的系統(tǒng)(例如CPU內(nèi)核和DDR存儲(chǔ)器這樣的應(yīng)用)和需要極低占空比的應(yīng)用應(yīng)該選擇 ACOTTM架構(gòu)的 Buck 轉(zhuǎn)換器來(lái)供電。需要引起注意的是這種架構(gòu)在負(fù)載發(fā)生變化時(shí)的響應(yīng)過(guò)程中開(kāi)關(guān)切換工作頻率是有明顯變化的。
電流模式固定導(dǎo)通時(shí)間(CMCOT) Buck 轉(zhuǎn)換器的性能介于電流模式和 ACOTTM之間,因而適用于需要相對(duì)穩(wěn)健的負(fù)載響應(yīng)特性的應(yīng)用中,那些需要較短的最小導(dǎo)通時(shí)間的應(yīng)用(指較高工作頻率結(jié)合較大降壓比的狀況)也是它們發(fā)揮作用的時(shí)候。
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 模擬信號(hào)鏈的設(shè)計(jì)注意事項(xiàng)
- 熱烈祝賀 Andrew MENG 晉升為 ASEAN(東盟)市場(chǎng)經(jīng)理!
- 邁向更綠色的未來(lái):GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線檢測(cè) 芯片查詢 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉