你的位置:首頁(yè) > EMC安規(guī) > 正文
TI專家教你如何設(shè)計(jì)EMC兼容的汽車開(kāi)關(guān)穩(wěn)壓器
發(fā)布時(shí)間:2012-07-05 來(lái)源:德州儀器
導(dǎo)言:現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。TI專家將以沒(méi)有復(fù)雜數(shù)學(xué)運(yùn)算的直覺(jué)方式,探討成功實(shí)現(xiàn)開(kāi)關(guān)穩(wěn)壓器的基本因素…
汽車本身不斷變化,驅(qū)動(dòng)汽車的電子裝置也是如此。其中最顯著的莫過(guò)于插電式電動(dòng)汽車(PEV),它們采用300V至400V的鋰離子電池和三相推進(jìn)馬達(dá)取代取代燃?xì)夤藓蛢?nèi)燃機(jī)。精密的電池組電量監(jiān)控、再生制動(dòng)系統(tǒng)及復(fù)雜的傳輸控制可將電池使用時(shí)間優(yōu)化,使得電池需要充電的頻率減少。此外,現(xiàn)今的電動(dòng)汽車或其它種類的汽車都具有許多可提升性能、安全、便利性及舒適感的電子模塊。許多中檔車均配備先進(jìn)的全球定位系統(tǒng)(GPS)、集成DVD播放器及高性能音響系統(tǒng)。
伴隨這些先進(jìn)設(shè)備而來(lái)的,是對(duì)更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉(zhuǎn)換為調(diào)節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時(shí)宜。更準(zhǔn)確地說(shuō),線性穩(wěn)壓器使得輸出電壓降低而導(dǎo)致負(fù)載電流增加。開(kāi)關(guān)穩(wěn)壓器則愈來(lái)愈受到廣泛使用,隨之而來(lái)的是對(duì)于電磁波干擾(EMI)無(wú)線射頻的憂慮,以及對(duì)于安全性系統(tǒng)的重視。
本文將以沒(méi)有復(fù)雜數(shù)學(xué)運(yùn)算的直覺(jué)方式,探討成功實(shí)現(xiàn)開(kāi)關(guān)穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設(shè)計(jì)、元件選用、配置、噪聲擴(kuò)散及屏蔽。
用簡(jiǎn)單方法實(shí)現(xiàn)開(kāi)關(guān)電源EMC
本文的目的在于不需要完全了解復(fù)雜的EMI,即可嘗試設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器。事實(shí)上,與EMI有關(guān)的所有問(wèn)題都來(lái)源于未完全達(dá)到開(kāi)關(guān)穩(wěn)壓器內(nèi)電壓與電流變化的速率,以及與電路板信號(hào)線上或元件內(nèi)寄生電路元件的互動(dòng)方式。以通過(guò)額定14V且以5A產(chǎn)生5V電壓的汽車電池產(chǎn)生動(dòng)力的200kHz降壓型開(kāi)關(guān)穩(wěn)壓器為例,若要達(dá)到可觀的效率,開(kāi)關(guān)節(jié)點(diǎn)的電壓斜率應(yīng)該只占導(dǎo)通時(shí)間的一小段,例如1/12以下。連續(xù)導(dǎo)電模式(CCM)下運(yùn)作的降壓轉(zhuǎn)換器導(dǎo)通時(shí)間為D/fsw,其中D是負(fù)載周期或脈寬調(diào)制(PWM)信號(hào)開(kāi)啟時(shí)間百分比與整段時(shí)間的比值(ton及toff),而fsw是轉(zhuǎn)換器的開(kāi)關(guān)頻率。
對(duì)于CCM中運(yùn)作的降壓轉(zhuǎn)換器,電感電流一直是非零的正電流。在這種情況下,負(fù)載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開(kāi)關(guān)頻率時(shí),我們很快計(jì)算出導(dǎo)通時(shí)間為1.8μs。為支持此頻率,控制開(kāi)關(guān)的上升/下降時(shí)間必須小于90納秒。這使得我們注意到第一個(gè)減少噪聲的方法,也就是斜率控制。您可能還無(wú)法理解,但是此時(shí)我們非常了解與PWM切換節(jié)點(diǎn)有關(guān)的諧波,也就是開(kāi)關(guān)穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內(nèi)容表示,這表明了EMI背后的驅(qū)動(dòng)因素。這一傅里葉包絡(luò)定義了可通過(guò)傅里葉分析或計(jì)算梯形波形導(dǎo)通時(shí)間及上升時(shí)間取得的諧波振幅。
觀察頻域時(shí),可看出相等上升和下降時(shí)間的梯形波形是由不同的諧波信號(hào)所組成,這些信號(hào)存在于周期信號(hào)基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會(huì)在1/(π×τ)的第一個(gè)轉(zhuǎn)折點(diǎn)(導(dǎo)通時(shí)間)減至20dB/dec,并且在1/(π×tr)的第二個(gè)轉(zhuǎn)折點(diǎn)減至40dB/dec。因此,限制開(kāi)關(guān)節(jié)點(diǎn)波形的斜率會(huì)對(duì)減少發(fā)射量具有重大影響。通過(guò)這項(xiàng)探討,應(yīng)該能夠清楚顯示降低運(yùn)作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個(gè)難點(diǎn)與AM頻段有關(guān)。該頻段從500kHz開(kāi)始,一直持續(xù)到2MHz,對(duì)于開(kāi)關(guān)穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設(shè)沒(méi)有任何電路板諧振),因此可在AM頻段上下運(yùn)作。
負(fù)載周期重要嗎?
另一項(xiàng)重要因素是,如果負(fù)載周期剛好是50%,復(fù)雜梯形切換波形的所有能量會(huì)以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負(fù)載周期運(yùn)作是最壞的情況。在50%上下的負(fù)載周期,即使出現(xiàn)諧波,也會(huì)發(fā)生自然的EMI擴(kuò)散。
EMI及EMC標(biāo)準(zhǔn)
您可以將EMI視為不適宜的能量,而這個(gè)能量不需要太多就有可能違反發(fā)射標(biāo)準(zhǔn)。事實(shí)上,EMI是相當(dāng)?shù)偷哪芰啃?yīng)。例如,在1MHz的狀況下,只要20nW的EMI便會(huì)違反FCC對(duì)于傳導(dǎo)發(fā)射的規(guī)范。傳導(dǎo)發(fā)射是以頻譜分析儀監(jiān)測(cè)輸入來(lái)源高頻率元件而測(cè)得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開(kāi)關(guān)穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開(kāi)關(guān)穩(wěn)壓器的輸入是下一個(gè)需要注意之處。
[page]
輸入濾波器的考量
造成汽車出現(xiàn)EMI的其中一個(gè)主要因素是開(kāi)關(guān)穩(wěn)壓器在電源排線上傳入AC電流。這些變化的電流本身具有輻射發(fā)射及傳導(dǎo)發(fā)射的各種波形。例如,在非隔離式升壓轉(zhuǎn)換器中,圖2(a)所示的輸入電容(C2)及升壓電感(L1)形成隔離線路發(fā)射的單向EMI濾波器。不過(guò),輸入電流具有該波形傅里葉擴(kuò)展的AC三角波形,如圖2(b)的綠色信號(hào)線所示。
只要加入L2及C2,波形便會(huì)變成正弦曲線,而能量會(huì)重新調(diào)整為相當(dāng)?shù)偷母哳l率峰值。不過(guò),如果不能正確設(shè)計(jì)輸入濾波器,則會(huì)將噪聲放大而使得控制回路不穩(wěn)定。因此,了解濾波器設(shè)計(jì)的概念,對(duì)于優(yōu)化濾波器回波及成本相當(dāng)重要。使用SPICE的AC分析是有效了解濾波器行為的工具。
不論是設(shè)計(jì)降壓或升壓電源,差動(dòng)模式濾波器或雙向電容輸入濾波器都相當(dāng)實(shí)用,這些能夠避免EMI噪聲進(jìn)入線路以及輻射和/或傳導(dǎo)噪聲。需要注意的是,與濾波器元件相關(guān)的跨繞組終端電容及電容ESR等寄生元件會(huì)明顯影響諧波的衰減,因此應(yīng)該謹(jǐn)慎使用。
選用正確的元件
元件選擇是設(shè)計(jì)EMI兼容開(kāi)關(guān)穩(wěn)壓器的關(guān)鍵部分。例如,屏蔽的電感有助于縮小會(huì)產(chǎn)生輻射且耦合成為互感及高阻抗電路(例如PWM控制器的輸入誤差放大器)的漏磁場(chǎng)。
具有軟反向或低反向恢復(fù)特性的二極管,能夠?qū)膶?dǎo)通狀態(tài)變成截止?fàn)顟B(tài)的二極管相關(guān)的大浪涌電流降至最低。這些峰值電流會(huì)與寄生電容產(chǎn)生作用,而在超出100MHz的切換節(jié)點(diǎn)造成振蕩,并且對(duì)EMC試驗(yàn)造成不良影響。雖然不在本文的討論范圍內(nèi),但還是需要說(shuō)明的是:不正確選用開(kāi)關(guān)穩(wěn)壓器的回路補(bǔ)償元件,會(huì)使得EMI加劇。如果未正確補(bǔ)償電源供應(yīng),輸出紋波及不穩(wěn)定現(xiàn)象會(huì)使噪聲增加。經(jīng)過(guò)適當(dāng)補(bǔ)償?shù)碾娫垂?yīng)是達(dá)到良好噪聲性能的關(guān)鍵。
謹(jǐn)記電流經(jīng)過(guò)的路徑
現(xiàn)在需要處理EMI兼容開(kāi)關(guān)穩(wěn)壓器最容易控制的必需層面,也就是電路信號(hào)線路徑及元件位置。元件位置會(huì)在很大程度上影響電路信號(hào)線路徑。前文曾經(jīng)說(shuō)過(guò)EMI是不適宜的能量,而且變化的電流及電壓會(huì)通過(guò)寄生電容、互感或空氣耦合到敏感電路(例如高阻抗)。因此,對(duì)于將來(lái)源的發(fā)射量降至最低、元件位置及電流路徑具有重要的效用。
在一個(gè)電源的正確配置中,必須將大電流導(dǎo)體的回路部分縮減至最小。這樣做能夠?qū)⒆鳛樘炀€源和發(fā)射能量的電感降至最低。其中一個(gè)層面是有效放置元件及選用去耦電容。圖3顯示同步降壓轉(zhuǎn)換器的輸出功率級(jí)與濾波器。C3將功率級(jí)去耦合,以便在Q2啟動(dòng)時(shí)提供低阻抗源。為了將輻射發(fā)射量降至最低,必須如圖所示連接C3,其中電容的固有阻抗、電路信號(hào)線及通過(guò)電感的互連均縮減至最小。另外,也需要具有諸如X7R等高自振頻率的高品質(zhì)電容電介質(zhì)。
[page]
屏蔽
本文將說(shuō)明的最后幾項(xiàng)技術(shù)是噪聲屏蔽及噪聲擴(kuò)散,這些可在運(yùn)用前文討論的技術(shù)之后用來(lái)提升噪聲容限。如果未達(dá)到EMC標(biāo)準(zhǔn)或噪聲容限不足,則需要外部屏蔽來(lái)轉(zhuǎn)移輻射電場(chǎng)發(fā)射量,以免傳輸?shù)紼MC接收器天線。
散熱器或磁性核心等表面出現(xiàn)開(kāi)關(guān)電壓時(shí),會(huì)產(chǎn)生電場(chǎng)。通常通過(guò)導(dǎo)電機(jī)殼即可屏蔽電場(chǎng),其中的導(dǎo)電材料可將電場(chǎng)轉(zhuǎn)換為電流,以隔離電場(chǎng)。當(dāng)然,其中也必須有該電流的路徑(一般是接地)。但是,該電流造成的整個(gè)傳導(dǎo)噪聲能量需要用濾波器加以解決。外部磁場(chǎng)屏蔽更具挑戰(zhàn)性(成本高),而且在較高頻率時(shí)的效果不佳。因此,應(yīng)該謹(jǐn)慎設(shè)計(jì)相關(guān)磁性元件及電路板回路部分。
采用擴(kuò)散頻譜
最后,本文將探討另一項(xiàng)越來(lái)越受到廣泛使用的技術(shù),能夠?qū)⒎逯抵C波能量散布于較大的頻帶,以有效降低該能量。該技術(shù)被稱為展頻頻率抖動(dòng)(SSFD),能夠通過(guò)諧波峰值的降低將噪聲信號(hào)從窄頻變成寬頻,以改變?cè)肼曨l譜。其中必須了解能量頻譜的變化,而整個(gè)能量則維持不變。最終的結(jié)果是噪聲水平一般會(huì)增加,從而損害高保真系統(tǒng)。圖4顯示發(fā)生的諧波擴(kuò)散及峰值降低。一般降低的幅度為5至10dB,后續(xù)的諧波會(huì)增加峰值降低的幅度。
本文小結(jié)
您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。不論是設(shè)計(jì)汽車的開(kāi)關(guān)穩(wěn)壓器,還是設(shè)計(jì)不使用電池的開(kāi)關(guān)穩(wěn)壓器或復(fù)雜的PEV電池充電器,設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器都需要了解Maxwell方程式的概念。幸好對(duì)于我們大多數(shù)人而言,其中并未涉及偏微分方程式,而只需要注意快速改變電壓/電流時(shí)出現(xiàn)的磁場(chǎng)及電場(chǎng),并了解本文中所述的技術(shù)即可。
汽車本身不斷變化,驅(qū)動(dòng)汽車的電子裝置也是如此。其中最顯著的莫過(guò)于插電式電動(dòng)汽車(PEV),它們采用300V至400V的鋰離子電池和三相推進(jìn)馬達(dá)取代取代燃?xì)夤藓蛢?nèi)燃機(jī)。精密的電池組電量監(jiān)控、再生制動(dòng)系統(tǒng)及復(fù)雜的傳輸控制可將電池使用時(shí)間優(yōu)化,使得電池需要充電的頻率減少。此外,現(xiàn)今的電動(dòng)汽車或其它種類的汽車都具有許多可提升性能、安全、便利性及舒適感的電子模塊。許多中檔車均配備先進(jìn)的全球定位系統(tǒng)(GPS)、集成DVD播放器及高性能音響系統(tǒng)。
伴隨這些先進(jìn)設(shè)備而來(lái)的,是對(duì)更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉(zhuǎn)換為調(diào)節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時(shí)宜。更準(zhǔn)確地說(shuō),線性穩(wěn)壓器使得輸出電壓降低而導(dǎo)致負(fù)載電流增加。開(kāi)關(guān)穩(wěn)壓器則愈來(lái)愈受到廣泛使用,隨之而來(lái)的是對(duì)于電磁波干擾(EMI)無(wú)線射頻的憂慮,以及對(duì)于安全性系統(tǒng)的重視。
本文將以沒(méi)有復(fù)雜數(shù)學(xué)運(yùn)算的直覺(jué)方式,探討成功實(shí)現(xiàn)開(kāi)關(guān)穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設(shè)計(jì)、元件選用、配置、噪聲擴(kuò)散及屏蔽。
用簡(jiǎn)單方法實(shí)現(xiàn)開(kāi)關(guān)電源EMC
本文的目的在于不需要完全了解復(fù)雜的EMI,即可嘗試設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器。事實(shí)上,與EMI有關(guān)的所有問(wèn)題都來(lái)源于未完全達(dá)到開(kāi)關(guān)穩(wěn)壓器內(nèi)電壓與電流變化的速率,以及與電路板信號(hào)線上或元件內(nèi)寄生電路元件的互動(dòng)方式。以通過(guò)額定14V且以5A產(chǎn)生5V電壓的汽車電池產(chǎn)生動(dòng)力的200kHz降壓型開(kāi)關(guān)穩(wěn)壓器為例,若要達(dá)到可觀的效率,開(kāi)關(guān)節(jié)點(diǎn)的電壓斜率應(yīng)該只占導(dǎo)通時(shí)間的一小段,例如1/12以下。連續(xù)導(dǎo)電模式(CCM)下運(yùn)作的降壓轉(zhuǎn)換器導(dǎo)通時(shí)間為D/fsw,其中D是負(fù)載周期或脈寬調(diào)制(PWM)信號(hào)開(kāi)啟時(shí)間百分比與整段時(shí)間的比值(ton及toff),而fsw是轉(zhuǎn)換器的開(kāi)關(guān)頻率。
對(duì)于CCM中運(yùn)作的降壓轉(zhuǎn)換器,電感電流一直是非零的正電流。在這種情況下,負(fù)載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開(kāi)關(guān)頻率時(shí),我們很快計(jì)算出導(dǎo)通時(shí)間為1.8μs。為支持此頻率,控制開(kāi)關(guān)的上升/下降時(shí)間必須小于90納秒。這使得我們注意到第一個(gè)減少噪聲的方法,也就是斜率控制。您可能還無(wú)法理解,但是此時(shí)我們非常了解與PWM切換節(jié)點(diǎn)有關(guān)的諧波,也就是開(kāi)關(guān)穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內(nèi)容表示,這表明了EMI背后的驅(qū)動(dòng)因素。這一傅里葉包絡(luò)定義了可通過(guò)傅里葉分析或計(jì)算梯形波形導(dǎo)通時(shí)間及上升時(shí)間取得的諧波振幅。
觀察頻域時(shí),可看出相等上升和下降時(shí)間的梯形波形是由不同的諧波信號(hào)所組成,這些信號(hào)存在于周期信號(hào)基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會(huì)在1/(π×τ)的第一個(gè)轉(zhuǎn)折點(diǎn)(導(dǎo)通時(shí)間)減至20dB/dec,并且在1/(π×tr)的第二個(gè)轉(zhuǎn)折點(diǎn)減至40dB/dec。因此,限制開(kāi)關(guān)節(jié)點(diǎn)波形的斜率會(huì)對(duì)減少發(fā)射量具有重大影響。通過(guò)這項(xiàng)探討,應(yīng)該能夠清楚顯示降低運(yùn)作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個(gè)難點(diǎn)與AM頻段有關(guān)。該頻段從500kHz開(kāi)始,一直持續(xù)到2MHz,對(duì)于開(kāi)關(guān)穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設(shè)沒(méi)有任何電路板諧振),因此可在AM頻段上下運(yùn)作。
負(fù)載周期重要嗎?
另一項(xiàng)重要因素是,如果負(fù)載周期剛好是50%,復(fù)雜梯形切換波形的所有能量會(huì)以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負(fù)載周期運(yùn)作是最壞的情況。在50%上下的負(fù)載周期,即使出現(xiàn)諧波,也會(huì)發(fā)生自然的EMI擴(kuò)散。
EMI及EMC標(biāo)準(zhǔn)
您可以將EMI視為不適宜的能量,而這個(gè)能量不需要太多就有可能違反發(fā)射標(biāo)準(zhǔn)。事實(shí)上,EMI是相當(dāng)?shù)偷哪芰啃?yīng)。例如,在1MHz的狀況下,只要20nW的EMI便會(huì)違反FCC對(duì)于傳導(dǎo)發(fā)射的規(guī)范。傳導(dǎo)發(fā)射是以頻譜分析儀監(jiān)測(cè)輸入來(lái)源高頻率元件而測(cè)得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開(kāi)關(guān)穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開(kāi)關(guān)穩(wěn)壓器的輸入是下一個(gè)需要注意之處。
[page]
輸入濾波器的考量
造成汽車出現(xiàn)EMI的其中一個(gè)主要因素是開(kāi)關(guān)穩(wěn)壓器在電源排線上傳入AC電流。這些變化的電流本身具有輻射發(fā)射及傳導(dǎo)發(fā)射的各種波形。例如,在非隔離式升壓轉(zhuǎn)換器中,圖2(a)所示的輸入電容(C2)及升壓電感(L1)形成隔離線路發(fā)射的單向EMI濾波器。不過(guò),輸入電流具有該波形傅里葉擴(kuò)展的AC三角波形,如圖2(b)的綠色信號(hào)線所示。
只要加入L2及C2,波形便會(huì)變成正弦曲線,而能量會(huì)重新調(diào)整為相當(dāng)?shù)偷母哳l率峰值。不過(guò),如果不能正確設(shè)計(jì)輸入濾波器,則會(huì)將噪聲放大而使得控制回路不穩(wěn)定。因此,了解濾波器設(shè)計(jì)的概念,對(duì)于優(yōu)化濾波器回波及成本相當(dāng)重要。使用SPICE的AC分析是有效了解濾波器行為的工具。
不論是設(shè)計(jì)降壓或升壓電源,差動(dòng)模式濾波器或雙向電容輸入濾波器都相當(dāng)實(shí)用,這些能夠避免EMI噪聲進(jìn)入線路以及輻射和/或傳導(dǎo)噪聲。需要注意的是,與濾波器元件相關(guān)的跨繞組終端電容及電容ESR等寄生元件會(huì)明顯影響諧波的衰減,因此應(yīng)該謹(jǐn)慎使用。
選用正確的元件
元件選擇是設(shè)計(jì)EMI兼容開(kāi)關(guān)穩(wěn)壓器的關(guān)鍵部分。例如,屏蔽的電感有助于縮小會(huì)產(chǎn)生輻射且耦合成為互感及高阻抗電路(例如PWM控制器的輸入誤差放大器)的漏磁場(chǎng)。
具有軟反向或低反向恢復(fù)特性的二極管,能夠?qū)膶?dǎo)通狀態(tài)變成截止?fàn)顟B(tài)的二極管相關(guān)的大浪涌電流降至最低。這些峰值電流會(huì)與寄生電容產(chǎn)生作用,而在超出100MHz的切換節(jié)點(diǎn)造成振蕩,并且對(duì)EMC試驗(yàn)造成不良影響。雖然不在本文的討論范圍內(nèi),但還是需要說(shuō)明的是:不正確選用開(kāi)關(guān)穩(wěn)壓器的回路補(bǔ)償元件,會(huì)使得EMI加劇。如果未正確補(bǔ)償電源供應(yīng),輸出紋波及不穩(wěn)定現(xiàn)象會(huì)使噪聲增加。經(jīng)過(guò)適當(dāng)補(bǔ)償?shù)碾娫垂?yīng)是達(dá)到良好噪聲性能的關(guān)鍵。
謹(jǐn)記電流經(jīng)過(guò)的路徑
現(xiàn)在需要處理EMI兼容開(kāi)關(guān)穩(wěn)壓器最容易控制的必需層面,也就是電路信號(hào)線路徑及元件位置。元件位置會(huì)在很大程度上影響電路信號(hào)線路徑。前文曾經(jīng)說(shuō)過(guò)EMI是不適宜的能量,而且變化的電流及電壓會(huì)通過(guò)寄生電容、互感或空氣耦合到敏感電路(例如高阻抗)。因此,對(duì)于將來(lái)源的發(fā)射量降至最低、元件位置及電流路徑具有重要的效用。
在一個(gè)電源的正確配置中,必須將大電流導(dǎo)體的回路部分縮減至最小。這樣做能夠?qū)⒆鳛樘炀€源和發(fā)射能量的電感降至最低。其中一個(gè)層面是有效放置元件及選用去耦電容。圖3顯示同步降壓轉(zhuǎn)換器的輸出功率級(jí)與濾波器。C3將功率級(jí)去耦合,以便在Q2啟動(dòng)時(shí)提供低阻抗源。為了將輻射發(fā)射量降至最低,必須如圖所示連接C3,其中電容的固有阻抗、電路信號(hào)線及通過(guò)電感的互連均縮減至最小。另外,也需要具有諸如X7R等高自振頻率的高品質(zhì)電容電介質(zhì)。
[page]
屏蔽
本文將說(shuō)明的最后幾項(xiàng)技術(shù)是噪聲屏蔽及噪聲擴(kuò)散,這些可在運(yùn)用前文討論的技術(shù)之后用來(lái)提升噪聲容限。如果未達(dá)到EMC標(biāo)準(zhǔn)或噪聲容限不足,則需要外部屏蔽來(lái)轉(zhuǎn)移輻射電場(chǎng)發(fā)射量,以免傳輸?shù)紼MC接收器天線。
散熱器或磁性核心等表面出現(xiàn)開(kāi)關(guān)電壓時(shí),會(huì)產(chǎn)生電場(chǎng)。通常通過(guò)導(dǎo)電機(jī)殼即可屏蔽電場(chǎng),其中的導(dǎo)電材料可將電場(chǎng)轉(zhuǎn)換為電流,以隔離電場(chǎng)。當(dāng)然,其中也必須有該電流的路徑(一般是接地)。但是,該電流造成的整個(gè)傳導(dǎo)噪聲能量需要用濾波器加以解決。外部磁場(chǎng)屏蔽更具挑戰(zhàn)性(成本高),而且在較高頻率時(shí)的效果不佳。因此,應(yīng)該謹(jǐn)慎設(shè)計(jì)相關(guān)磁性元件及電路板回路部分。
采用擴(kuò)散頻譜
最后,本文將探討另一項(xiàng)越來(lái)越受到廣泛使用的技術(shù),能夠?qū)⒎逯抵C波能量散布于較大的頻帶,以有效降低該能量。該技術(shù)被稱為展頻頻率抖動(dòng)(SSFD),能夠通過(guò)諧波峰值的降低將噪聲信號(hào)從窄頻變成寬頻,以改變?cè)肼曨l譜。其中必須了解能量頻譜的變化,而整個(gè)能量則維持不變。最終的結(jié)果是噪聲水平一般會(huì)增加,從而損害高保真系統(tǒng)。圖4顯示發(fā)生的諧波擴(kuò)散及峰值降低。一般降低的幅度為5至10dB,后續(xù)的諧波會(huì)增加峰值降低的幅度。
本文小結(jié)
您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。不論是設(shè)計(jì)汽車的開(kāi)關(guān)穩(wěn)壓器,還是設(shè)計(jì)不使用電池的開(kāi)關(guān)穩(wěn)壓器或復(fù)雜的PEV電池充電器,設(shè)計(jì)EMI兼容的開(kāi)關(guān)穩(wěn)壓器都需要了解Maxwell方程式的概念。幸好對(duì)于我們大多數(shù)人而言,其中并未涉及偏微分方程式,而只需要注意快速改變電壓/電流時(shí)出現(xiàn)的磁場(chǎng)及電場(chǎng),并了解本文中所述的技術(shù)即可。
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 模擬信號(hào)鏈的設(shè)計(jì)注意事項(xiàng)
- 熱烈祝賀 Andrew MENG 晉升為 ASEAN(東盟)市場(chǎng)經(jīng)理!
- 邁向更綠色的未來(lái):GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
PLC
Premier Farnell
Recom
RF
RF/微波IC
RFID
rfid
RF連接器
RF模塊
RS
Rubycon
SATA連接器
SD連接器
SII
SIM卡連接器
SMT設(shè)備
SMU
SOC
SPANSION
SRAM
SSD
ST
ST-ERICSSON
Sunlord
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶