- 汽車前大燈的散熱技術
- LED散熱通道設計
- 加裝風扇強制對流
- 車燈環(huán)境的系統(tǒng)設計
眾所周知,半導體材料在工作時受環(huán)境溫度影響較大。大功率LED的光電轉換效率更低,工作過程中只有10%~25%的電能轉換成光能,其余的幾乎都轉換成熱能。加之汽車前大燈安裝在炙熱的發(fā)動機艙內,高溫水箱、引擎、排氣系統(tǒng)所產(chǎn)生的熱將LED前大燈置于嚴酷的環(huán)境中。傳統(tǒng)車燈燈泡所產(chǎn)生的熱遠高于LED,但燈泡輸出的亮度不會因為熱而變化,其熱設計的重點是殼體內的均溫設計。而LED的光輸出卻會因為自身的熱或來自發(fā)動機艙的高溫而影響本身PN結溫穩(wěn)定,LED光通量ФV和波長等重要參數(shù)受到PN結溫的直接影響,這種不良的溫度循環(huán)將導致發(fā)光效率和壽命急劇下降。因此散熱成為LED作為光源設計的重要課題。
汽車前大燈的散熱技術
被動散熱與主動散熱
通常的散熱設計中,焊裝大功率LED的電路板被緊緊固定在散熱器上。LED工作時所產(chǎn)生的熱量通過傳導方式經(jīng)由電路板被傳導到熱傳導率較好的鋁質散熱器上。鋁質散熱器的翼片與空氣大面積接觸將熱散發(fā)開來。為了有效地減小散熱器和電路板之間的熱阻,其間填充了導熱介質。選用的散熱器其翼片形狀和面積是可以滿足LED大燈散熱方案的設計。這種散熱方式我們稱之為被動散熱。
主動散熱常用液冷、熱管、風冷等方式。由于液冷使用的液體必須在泵的帶動下強制循環(huán)帶走散熱器的熱量,熱管則依靠高導熱性能的傳熱元件在全封閉真空管內的液體的蒸發(fā)與凝結來傳遞熱量,二者都不適合車燈內使用。風冷散熱具有價格較低、安裝簡單等優(yōu)點最為常用。針對被動散熱方式存在的散熱器中心區(qū)域溫度相對集中的情況,加裝風扇強制對流后(見圖1),對緩解散熱器溫度不均勻有明顯效果。
LED散熱通道設計
加裝風扇后強制對流 通常LED被焊在雙面敷銅層的印制板(PCB)上,LED的底面與PCB的敷銅面焊在一起,為提高散熱效率,以較大的敷銅層作散熱面。這是一種最簡單的散熱結構。
本文研究的汽車前大燈用LED是目前OSRAM公司最大功率的一種LEUMD1W4;管芯散熱設計選用了一種更利于散熱的LE3S封裝。這種封裝的特點是,以面積較大的銅合金散熱墊為基座,管芯固定在基座中央。同時將LED基座與鋁基板接觸區(qū)域的絕緣介質剝離,使銅合金基座與鋁基板直接接觸?;系臒嶂苯觽鲗е罫ED的外部。這種內部結構去處了管芯和基座之間的介質減少了熱阻,更直接地將管芯的結溫導出(見圖2a)。
車燈環(huán)境的系統(tǒng)設計
由于現(xiàn)階段的LED的輸出光通量低,僅汽車近光燈就需要1000lm以上??紤]到汽車前大燈的配光要求以及電學、光學參數(shù)的穩(wěn)定性,LED應用于汽車前大燈常需要集幾顆甚至幾十顆LED元件于一塊模組中,才能滿足車燈法規(guī)所需的要求。目前,我們針對O2star和X2lamp產(chǎn)品的類似封裝進行配光設計。其中OSTAR4chip車燈專用的LEUMD1W4單只LED輸出光通量大于350lm,陣列3只這種LED即可滿足車燈1000lm的基本要求。
(1)擴大散熱面積提高傳導效率。在LED汽車前大燈近光單元設計中,3顆大功率LED陣列在鋁基板上。這種緊密排列的大功率LED熱量的高度集中和散熱難度可想而知。試驗樣件的做法是鋁基板與散熱器緊密貼合固定。二者之間的填充了性價比較高且使用簡單的導熱硅脂,在整個散熱系統(tǒng)中,硅脂層其實是散熱關鍵之所在。目前主流導熱硅脂的導熱系數(shù)均大于1W/m·K,優(yōu)質的可達到6W/m·K以上,試驗選擇了性價比較高導熱率達到4。4W/m·K的TG2244導熱硅脂。
[page]
(2)強制對流提供與外界空氣熱交換。在散熱片的背面加裝風扇促使強制空氣流動。風扇加速了散熱片的熱交換的同時,流動的空氣也直接從PCB板上帶走了部分熱量。由于燈體的狹小且密封,與外界的空氣對流幾乎不可能。圖3a所示風冷結構中風扇的強制對流可以緩解散熱器中心區(qū)域與周圍環(huán)境的溫度不均勻,使燈體內部和燈體外殼的溫度盡量接近。有助于將內部的熱通過外殼和外置散熱器傳導出去。
(3)散熱器部分外置。根據(jù)發(fā)動機艙內的分布及燈體安裝的空間大小,將燈體散熱器設計為內置和外置二個部分,如圖3b所示。外置散熱器設計在燈殼的上緣。內置LED產(chǎn)生的熱由內置散熱器傳導到外置的散熱片上,再通過對流散熱??紤]到燈光通常在行駛時開啟,發(fā)動機艙受到強對流風冷的作用,溫度相對較低。加之車燈外殼上緣恰好暴露在車前蓋的縫隙處,車輛行駛時車蓋縫隙導入的氣流流經(jīng)外置散熱片的翼片,外置散熱器受到空氣的風冷。外置散熱器對燈內的降溫發(fā)揮了很好散熱作用。
試驗方法和數(shù)據(jù)
試驗設置和設備
根據(jù)理論設計、數(shù)據(jù)仿真,制作了試驗模型和LED前大燈工作樣件。樣件制作要求盡量接近目標產(chǎn)品,以求研究成果更快更好地轉換為產(chǎn)品。燈體內分別安裝了以LED為光源的遠光燈、近光燈以及轉向燈、位置燈。測試觀察的重點是燈體內部溫度對光衰的影響。
主要測試設備為遠方光電信息有限公司的YF1000光色電綜合分析系統(tǒng)、車燈配光自動測試系統(tǒng)以及多點溫度檢測儀等專用設備。測試點分別是:車燈照度、光型、LED光源溫度、PCB溫度、散熱器溫度以及燈腔不同位置的溫度梯度。設備具有自動記錄和數(shù)據(jù)預置功能,以驗證散熱與光衰的關系。
試驗數(shù)據(jù)
圖4是LED光源溫度與光衰在不同的散熱方式下的關系曲線。圖中可見僅PCB散熱、加散熱器的被動散熱和強制對流的主動散熱3種不同散熱設計存在相當大的差異。后二種在105℃時,基本上能夠提供80%以上的出光率。
一般功率器件(如電源IC)散熱計算中,只要結溫小于最大允許結溫溫度(一般是125℃)就可以了。但在大功率LED散熱設計中,其結溫TJ要求比125℃低得多。其原因是TJ對LED的出光率及壽命有較大影響,TJ越高會使LED的出光率越低,壽命越短。OSTAR公司給出的大功率白光LED的結溫TJ在亮度衰減70%時與壽命的關系,如圖5所示。
圖5:OSTAR公司LED結溫影響壽命圖
我們對圖3b所示的前大燈樣件做了不同條件下的光衰測試,試驗建立在LED散熱良好的基礎上,模組安裝在大燈封閉殼體內,溫度檢測點在LED光源附近。試驗數(shù)據(jù)采集時的環(huán)境溫度是在燈體外部施加的。試驗結果表明環(huán)境溫度60℃時,光衰緩慢;100℃時,光衰加劇(見圖6)。
圖6:不同溫度環(huán)境下LED的光衰
結論
LED自身的PN結產(chǎn)生的結溫升高,使LED的光衰加劇、發(fā)光效率受到影響,壽命變短。應用LED作為汽車前大燈光源時,通常會采用多個LED芯片陣列設計。因此在LED前大燈樣機設計中,首先做好LED散熱設計使結溫受到控制之后,根據(jù)LED大燈的運行環(huán)境,控制驅動功率和溫升,大功率LED小于80%的光衰和3000h的壽命才能得到基本保障。LED汽車前大燈產(chǎn)品才有廣泛的市場前景。