反激開關(guān)電源波形詳細(xì)分析
發(fā)布時(shí)間:2018-12-07 責(zé)任編輯:xueqi
【導(dǎo)讀】在開關(guān)電源市場中,400W以下的電源大約占了市場的70-80%,而其中反激式電源又占大部分,幾乎常見的消費(fèi)類產(chǎn)品全是反激式電源。以下將分析從波形判斷出反激電源的工作狀態(tài),以及MOSFET在開通和關(guān)斷瞬間寄生參數(shù)對波形的影響等。
一、兩種模式CCM和DCM
1、CCM(ConTInuousConducTIonMode),連續(xù)導(dǎo)通模式:在一個(gè)開關(guān)周期內(nèi),電感電流從不會(huì)到0?;蛘哒f電感從不“復(fù)位”,意味著在開關(guān)周期內(nèi)電感磁通從不回到0,功率管閉合時(shí),線圈中還有電流流過。
2、DCM(DisconTInuousConducTIonMode),非連續(xù)導(dǎo)通模式:在開關(guān)周期內(nèi),電感電流總會(huì)會(huì)到0,意味著電感被適當(dāng)?shù)?ldquo;復(fù)位”,即功率開關(guān)閉合時(shí),電感電流為零。
二、兩種模式在波形上的區(qū)別
1)變壓器初級電流,CCM模式是梯形波,而DCM模式是三角波。
2)次級整流管電流波形,CCM模式是梯形波,DCM模式是三角波。
3)MOS的Vds波形,CCM模式,在下一個(gè)周期開通前,Vds一直維持在Vin+Vf的平臺(tái)上。而DCM模式,在下一個(gè)周期開通前,Vds會(huì)從Vin+Vf這個(gè)平臺(tái)降下來發(fā)生阻尼振蕩。(Vf次級反射到原邊電壓)。
因此我們就可以很容易從波形上看出來反激電源是工作在CCM還是DCM狀態(tài)。
三、MOSFET在開通和關(guān)斷瞬間寄生參數(shù)對波形的影響
(1)DCM(Vds,Ip)
在MOS關(guān)斷的時(shí)候,Vds的波形顯示,MOS上的電壓遠(yuǎn)超過Vin+Vf,這是因?yàn)?,變壓器的初級有漏感。漏感的能量是不?huì)通過磁芯耦合到次級的。那么MOS關(guān)斷過程中,漏感電流也是不能突變的。漏感的電流變化也會(huì)產(chǎn)生感應(yīng)電動(dòng)勢,這個(gè)感應(yīng)電動(dòng)勢因?yàn)闊o法被次級耦合而箝位,電壓會(huì)沖的很高。那么為了避免MOS被電壓擊穿而損壞,所以我們在初級側(cè)加了一個(gè)RCD吸收緩沖電路,把漏感能量先儲(chǔ)存在電容里,然后通過R消耗掉。
當(dāng)次級電感電流降到了零。這意味著磁芯中的能量已經(jīng)完全釋放了。那么因?yàn)槎茈娏鹘档搅肆?,二極管也就自動(dòng)截止了,次級相當(dāng)于開路狀態(tài),輸出電壓不再反射回初級了。由于此時(shí)MOS的Vds電壓高于輸入電壓,所以在電壓差的作用下,MOS的結(jié)電容和初級電感發(fā)生諧振。諧振電流給MOS的結(jié)電容放電。Vds電壓開始下降,經(jīng)過1/4之一個(gè)諧振周期后又開始上升。由于RCD箝位電路以及其它寄生電阻的存在,這個(gè)振蕩是個(gè)阻尼振蕩,幅度越來越小。
f1比f2大很多(從波形上可以看出),這是由于漏感一般相對較小;同時(shí)由于f1所在回路阻抗比較小,諧振電流較大,所以能夠很快消耗在等效電阻上,這也就是為什么f1所在回路很快就諧振結(jié)束的原因?。ň唧w諧振時(shí)間可以通過等效模型求解:二次微分方程估算)
(2)CCM(Vds,IP)
(3)其他一些波形分析(次級輸出電壓Vs,Is,Vds)
不管是在CCM模式還是DCM模式,在mosfet開通on時(shí)刻,變壓器副邊都有震蕩。主要原因是初次及之間的漏感+輸出肖特基(或快恢復(fù))結(jié)電容+輸出電容諧振引起,在CCM模式下與肖特基的反向恢復(fù)電流也一些關(guān)系。故一般在輸出肖特基上并聯(lián)-一個(gè)RC來吸收,使肖特基應(yīng)力減小。
不管是在CCM模式還是DCM模式,在mosfet關(guān)斷off時(shí)刻,變壓器副邊電流IS波形都有一些震蕩。主要原因是次級電感+肖特基接電容+輸出電容之間的諧振造成的。
(4)RCD吸收電路對Vds的影響
在MOS關(guān)斷的時(shí)候,Vds的波形顯示,MOS上的電壓遠(yuǎn)超過Vin+Vf!這是因?yàn)?,變壓器的初級有漏感。漏感的能量是不?huì)通過磁芯耦合到次級的。那么MOS關(guān)斷過程中,漏感電流也是不能突變的。漏感的電流變化也會(huì)產(chǎn)生感應(yīng)電動(dòng)勢,這個(gè)感應(yīng)電動(dòng)勢因?yàn)闊o法被次級耦合而箝位,電壓會(huì)沖的很高。那么為了避免MOS被電壓擊穿而損壞,所以我們在初級側(cè)加了一個(gè)RCD吸收緩沖電路,把漏感能量先儲(chǔ)存在電容里,然后通過R消耗掉
(5)Vgs波形
為使mosfet在開通時(shí)間的上升沿比較陡,進(jìn)而提高效率。在布線時(shí)驅(qū)動(dòng)信號盡量通過雙線接到mosfet的G、S端,同時(shí)連接盡量短些。
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭金奪銀
- 輕松滿足檢測距離,勞易測新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
- 兩張圖說清楚共射極放大器為什么需要發(fā)射極電阻
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Toshiba多樣化電子元器件和半導(dǎo)體產(chǎn)品
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭金奪銀
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索