電壓轉(zhuǎn)換的級(jí)聯(lián)和混合分不清?看幾個(gè)示例就明白了
發(fā)布時(shí)間:2019-01-28 責(zé)任編輯:wenwei
【導(dǎo)讀】對(duì)于需要從高輸入電壓轉(zhuǎn)換到極低輸出電壓的應(yīng)用,有不同的解決方案。一個(gè)有趣的例子是從48 V轉(zhuǎn)換到3.3 V。這樣的規(guī)格不僅在信息技術(shù)市場(chǎng)的服務(wù)器應(yīng)用中很常見,在電信應(yīng)用中同樣常見。
如果將一個(gè)降壓轉(zhuǎn)換器(降壓器)用于此單一轉(zhuǎn)換步驟,如圖 1 所示,會(huì)出現(xiàn)小占空比的問題。
圖1. 通過單一轉(zhuǎn)換步驟將電壓從48 V降至3.3 V
占空比反映導(dǎo)通時(shí)間(當(dāng)主 開關(guān)導(dǎo)通時(shí))和斷開時(shí)間(當(dāng)主開關(guān)斷開時(shí))之間的關(guān)系。降壓轉(zhuǎn)換器的占空比由以下公式定義:
當(dāng)輸入電壓為48 V而輸出電壓為3.3 V時(shí),占空比約為7%。
這意味著在1 MHz(每個(gè)開關(guān)周期為1000 ns)的開關(guān)頻率下, Q1開關(guān)的導(dǎo)通時(shí)間僅有70 ns。然后,Q1開關(guān)斷開930 ns,Q2導(dǎo)通。對(duì)于這樣的電路,必須選擇允許最小導(dǎo)通時(shí)間為70 ns或更短的開關(guān)穩(wěn)壓器。如果選擇這樣一種器件,又會(huì)有另一個(gè)挑戰(zhàn)。
通常,當(dāng)以非常小的占空比運(yùn)行時(shí),降壓調(diào)節(jié)器的轉(zhuǎn)換效率會(huì)降低。這是因?yàn)榭捎脕碓陔姼兄写鎯?chǔ)能量的時(shí)間非常短。電感器需要在較長(zhǎng)的關(guān)斷時(shí)間內(nèi)提供能量。這通常會(huì)導(dǎo)致電路中的峰值電流非常高。為了降低這些電流,L1的電感需要相對(duì)較大。這是由于在導(dǎo)通時(shí)間內(nèi),一個(gè)大電壓差會(huì)施加于圖1 的L1兩端。
在這個(gè)例子中,導(dǎo)通時(shí)間內(nèi)電感兩端的電壓約為44.7 V,開關(guān)節(jié)點(diǎn)一側(cè)的電壓為48 V,輸出端電壓為3.3 V。電感電流通過以下公式計(jì)算:
如果電感兩端有高電壓,在電感不變的情況下,電感中的電流會(huì)在固定時(shí)間內(nèi)上升。為了減小電感峰值電流,需要選擇較高的電感值。然而,更高的電感值會(huì)增加功率損耗。
目前,非常常見且更高效的提高轉(zhuǎn)換效率的電路解決方案是利用一個(gè)中間電壓。圖2顯示了一個(gè)使用兩個(gè)高效率降壓調(diào)節(jié)器的級(jí)聯(lián)設(shè)置。第一步是將48 V電壓轉(zhuǎn)換為12 V,然后在第二轉(zhuǎn)換步驟中將該電壓轉(zhuǎn)換為3.3 V。當(dāng)從48 V降至12 V時(shí),LTM8027μModule穩(wěn)壓器模塊的總轉(zhuǎn)換效率超過92%。第二轉(zhuǎn)換步驟利用 LTM4624將12 V降至3.3 V,轉(zhuǎn)換效率為90%。這種方案的總轉(zhuǎn)換效率為83%,比圖1中的直接轉(zhuǎn)換效率高出3%。
圖2. 電壓分兩步從48 V降至3.3 V,包括一個(gè)12 V中間電壓
這可能相當(dāng)令人驚訝,因?yàn)?.3 V輸出上的所有功率都需要通過兩個(gè)獨(dú)立的開關(guān)穩(wěn)壓器電路。圖1所示電路的效率較低,原因是占空比較短,導(dǎo)致電感峰值電流較高。
比較單步降壓架構(gòu)與中間總線架構(gòu)時(shí),除轉(zhuǎn)換效率外,還有很多其他方面需要考慮。
圖3顯示了LTC7821的電路設(shè)置。它是一款混合式同步降壓型控制器,其中結(jié)合了電荷泵(用以將輸入電壓減半)和采用降壓拓?fù)浣Y(jié)構(gòu)的同步降壓轉(zhuǎn)換器。利用它在500 kHz開關(guān)頻率下將48 V轉(zhuǎn)換為12 V時(shí),轉(zhuǎn)換效率超過97%。其他架構(gòu)只有在低得多的開關(guān)頻率時(shí)才能實(shí)現(xiàn)如此高效率,而且需要較大電感。
圖3. 混合式降壓轉(zhuǎn)換器的電路設(shè)計(jì)
需要使用四個(gè)外部開關(guān)晶體管。在工作期間,電容C1和C2執(zhí)行電荷泵功能。以這種方式產(chǎn)生的電壓通過同步降壓功能轉(zhuǎn)換為精確調(diào)節(jié)的輸出電壓。為了優(yōu)化EMC特性,電荷泵采用軟開關(guān)操作。
電荷泵和降壓拓?fù)涞慕M合具有以下優(yōu)點(diǎn):
由于電荷泵和同步開關(guān)穩(wěn)壓器的優(yōu)化組合,轉(zhuǎn)換效率非常高。外部MOSFET M2、M3 和M4只需承受低電壓。電路也很緊湊。相比單級(jí)轉(zhuǎn)換器方法, 電感更小且更便宜。對(duì)于該混合式控制器,開關(guān)M1和M3的占空 比為D = 2×VOUT/VIN。對(duì)于M2和M4,占空比為D = (VIN – 2 × VOUT)/VIN。
對(duì)于電荷泵,許多開發(fā)人員假定功率輸出限制約為100 mW。采用 LTC7821 的混合式轉(zhuǎn)換器開關(guān)設(shè)計(jì)的電路可以提供高達(dá)25 A的輸出電流。為了獲得更高的性能,多個(gè)LTC7821控制器可以連成并聯(lián)多相配置,并且頻率同步以分擔(dān)整體負(fù)載。
圖4. 在500 kHz開關(guān)頻率下將48 V轉(zhuǎn)換為5 V的典型轉(zhuǎn)換效率
圖4顯示了不同負(fù)載電流下48 V輸入電壓和5 V輸出電壓的典型轉(zhuǎn)換效率。在大約6A時(shí),轉(zhuǎn)換效率超過90%。在13 A和24 A之間, 效率甚至高于94%。
混合式降壓控制器以緊湊的形式提供非常高的轉(zhuǎn)換效率。相對(duì)于采用中間總線電壓的分立式兩級(jí)開關(guān)穩(wěn)壓器設(shè)計(jì),以及以非常低占空比工作的單級(jí)轉(zhuǎn)換器,它提供了另一種有趣的解決方案。有些設(shè)計(jì)人員更喜歡級(jí)聯(lián)架構(gòu),有些則喜歡混合架構(gòu)。運(yùn)用這兩種選擇,每個(gè)設(shè)計(jì)都應(yīng)當(dāng)能成功。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
- 機(jī)電繼電器的特性及其在信號(hào)切換中的選型和應(yīng)用
- 雙向電源設(shè)計(jì)的優(yōu)點(diǎn)
- 利用兩個(gè)元件實(shí)現(xiàn) L 型網(wǎng)絡(luò)阻抗匹配
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索