使用芯片和貼片天線解決多頻帶射頻問題
發(fā)布時(shí)間:2017-08-15 來源:Bill Schweber 責(zé)任編輯:wenwei
【導(dǎo)讀】智能手機(jī)和可穿戴電子設(shè)備等手持和便攜式無線產(chǎn)品依賴可置入設(shè)備的微型芯片、貼片和印制線天線。盡管這些小型器件解決了在小尺寸系統(tǒng)中攜帶多頻帶天線陣列的問題,但它們也引入了輻射效率下降、阻抗匹配以及與附近物體和人體的交互等相關(guān)問題。
為解決這些問題,設(shè)計(jì)人員開始采用新的設(shè)計(jì)和電路方法,讓這些天線不只成為一個(gè)獨(dú)立的元器件,而是成為能夠化解上述諸多設(shè)計(jì)挑戰(zhàn)的動(dòng)態(tài)天線子系統(tǒng)的一部分。這一設(shè)計(jì)轉(zhuǎn)變需要進(jìn)行大量仿真和分析,而不斷改進(jìn)的場解算器軟件可以滿足這一需求。
芯片、貼片天線提供了折衷之選
從傳統(tǒng)的外部鞭形或短截天線過渡至芯片和貼片天線的原因很多,首當(dāng)其沖的是外部天線存在的美觀性和易折性問題。從性能的角度而言,智能手機(jī)等設(shè)備在給定的頻帶往往需要多個(gè)天線才能提供天線分集,進(jìn)而改善性能。此外,多頻帶設(shè)備(尤其是與新興的5G 標(biāo)準(zhǔn)兼容的設(shè)備)在其必須支持的每個(gè)頻帶,都需要單獨(dú)的獨(dú)立式天線。盡管有這么多原因,但芯片和貼片天線也有自身的短板。
芯片天線使用多層陶瓷結(jié)構(gòu)構(gòu)成在目標(biāo)頻率諧振的元器件(圖1)。與其他所有表面貼裝元器件一樣,它們的尺寸很小,可以輕松地貼裝在PC 板上。
圖1:沒有體積小、成本低且易于應(yīng)用的陶瓷芯片天線,許多便攜式無線設(shè)備將無從實(shí)現(xiàn)。圖中顯示的是Johanson Technology 2450AT18B100E,位于廣泛使用的2.4 至2.5 GHz 頻段的中間位置。(圖片來源:Johanson Technology)
我們用兩個(gè)例子來說明它們的特性。Johanson Technology 2450AT18B100E 是適用于2.4 至2.5 千兆赫(GHz) 頻段的1.6 x 3.2 mm 芯片天線,盡管它的體積很小,卻能提供近乎全向的輻射模式,而無需考慮方向(圖2)。類似這樣的天線在便攜式和手持無線設(shè)備中已得到廣泛的成功應(yīng)用。盡管芯片天線自身很簡單,但設(shè)計(jì)人員必須將相關(guān)的驅(qū)動(dòng)器電路與其50 ? 標(biāo)準(zhǔn)阻抗相匹配。當(dāng)在分集架構(gòu)中使用多個(gè)芯片天線時(shí),這可能成為一大難題。
圖2:Johanson 描述了芯片天線在全部三個(gè)軸(自上而下分別為:a) XY、b) XZ 和c) YZ)上的輻射模式;請注意,該模式在所有三個(gè)軸上近乎全向。(圖片來源:Johanson Technology)
另一款芯片天線是Taiyo Yuden AF216M245001-T,用于仿真同樣適合2.4 至2.5 GHz 頻帶的單極螺旋形天線。該天線的尺寸為2.5 x 1.6 mm,同樣具有近乎全向的特征,并且可在2.45 GHz 至2.7 GHz 頻帶保持低于2:1 的VSWR(圖3)。
圖3:Taiyo Yuden 的AF216M245001-T 芯片天線可在其主要工作帶寬2.45 GHz 至2.7 GHz 范圍內(nèi)保持2:1 的VSWR。(圖片來源:Taiyo Yuden)
由于芯片天線具有成本低、體積小和易于使用等特點(diǎn),它們看起來是可滿足眾多無線需求的最優(yōu)解決方案。盡管很多情況下的確如此,但在現(xiàn)實(shí)中,與所有元器件一樣,芯片天線也有自己的短板。在此案例中,它們的典型效率相對較低,僅為40% 至50%,而且容易受周邊的固定和變化條件影響,包括PC 板布局、附近的元器件和用戶等。
芯片天線的替代產(chǎn)品是貼片天線(圖4)。盡管它的尺寸比芯片設(shè)計(jì)要大,但相當(dāng)扁平,因此往往能夠沿產(chǎn)品外殼的內(nèi)側(cè)放置,遠(yuǎn)離元器件和其他輻射模式失真源。
貼片天線(例如Pulse Electronics 的W6112B0100)可支持包括智能電表、遠(yuǎn)程監(jiān)測和物聯(lián)網(wǎng)設(shè)計(jì)在內(nèi)的2 x 2 多路輸入、多路輸出(MIMO) LTE 應(yīng)用。盡管該天線的尺寸大于芯片天線(約為8.8 英寸長 ×0.8 英寸高),但根據(jù)所支持的具體頻帶,其效率可達(dá)55% 至75%(圖5)。
圖4:貼片天線(例如Pulse Electronics 的多頻帶W6112B0100)并非貼裝在PC 板上,而是連接到產(chǎn)品外殼的內(nèi)部,遠(yuǎn)離板和電路。(圖片來源:Pulse Electronics)
圖5:適用于2 x 2 MIMO 4G/LTE 的W6112B0100 設(shè)計(jì)為在698 MHz 至960 MHz、1.428 GHz 至1.51 GHz、1.559 GHz 至1.61 GHz、1.695 GHz 至2.2 GHz、2.3 GHz 至2.7 GHz 和3.4 GHz 至3.6 GHz 等多個(gè)頻帶工作,并能保持較高的效率。(圖片來源:Pulse Electronics)
第三種天線選擇是PC 板印制線方法,該方法使用PC 板的一個(gè)或多個(gè)蝕刻層來創(chuàng)建天線。此解決方案沒有直接的BOM 成本,并且極度靈活,因?yàn)樗苡糜趧?chuàng)建使用分立元器件無法實(shí)現(xiàn)的定制或獨(dú)特天線。單一的印制線天線可以覆蓋包括濾波在內(nèi)的多個(gè)頻帶,并且支持多極化。
但天下沒有“免費(fèi)的午餐”,因?yàn)橛≈凭€天線往往需要占用大量的PC 板空間,而且它的性能會(huì)受附近布局、元器件貼裝和元器件類型的很大影響。理論上的印制線天線與其實(shí)際安裝之間存在可能很難逾越的重大差距。
當(dāng)系統(tǒng)包含多個(gè)天線,而拓?fù)湟笤谔炀€之間切換時(shí),就會(huì)出現(xiàn)這樣的問題——如何實(shí)現(xiàn)切換。機(jī)電開關(guān)很有效,并且具有出色的電氣規(guī)格,但對于小型或便攜式設(shè)備以及需要快速開關(guān)的設(shè)備而言,這顯然不切實(shí)際。相反,應(yīng)使用電子開關(guān),通常是基于PIN 二極管的開關(guān)(參見“射頻開關(guān)如何以及為何使用PIN 二極管”)或固態(tài)開關(guān)(參見“半導(dǎo)體射頻開關(guān):體積小但性能強(qiáng)的電路元器件”)。盡管有時(shí)需要PIN 二極管的屬性,但與基于PIN 二極管的開關(guān)相比,固態(tài)開關(guān)更容易使用和引入到電路設(shè)計(jì)中。
例如,Peregrine Semiconductor 的PE42422MLAA-Z 是一款不含任何移動(dòng)零件的基本SPDT 射頻開關(guān),適合在5 MHz 至6 GHz 頻帶工作。將其引入到電路設(shè)計(jì)時(shí),面臨的設(shè)計(jì)挑戰(zhàn)也較少(圖6)。這款50 ? 元器件采用微型12 引線2 x 2 mm QFN 封裝,結(jié)合了板載的CMOS 控制邏輯和低壓CMOS 兼容型控制接口,無需外部元器件。它通常能在2 毫秒內(nèi)完成通道切換。
圖6:當(dāng)有多個(gè)天線時(shí),往往需要在天線之間切換射頻信號路徑。純電子射頻SPDT 開關(guān)(例如Peregrine Semiconductor 的PE42422MLAA-Z)提供的方法只需通過簡單的安裝和控制便能做到這一點(diǎn),而且在5 MHz 至6 GHz 頻帶范圍的開關(guān)時(shí)間僅為2 毫秒。(圖片來源:Peregrine Semiconductor)
插入損耗的范圍為0.23 dB (100 MHz) 至0.9 dB (6 GHz),整個(gè)范圍內(nèi)的三階交調(diào)點(diǎn)(IIP3) 為75 dBm(最小值)。利用這類開關(guān),可以輕松地在通用端口與兩個(gè)獨(dú)立端口之間實(shí)現(xiàn)隔離度為68 dB(較低頻率下)至17 dB(較高頻率下)的射頻信號雙向路由。插入損耗為0.23 至1.25 dB,同樣取決于頻率。
采用先進(jìn)的技術(shù)解決現(xiàn)實(shí)世界的問題
任何天線的性能都會(huì)受到其周邊環(huán)境的影響,包括附近的元器件、屏蔽和封裝等??梢詫@些元素的效應(yīng)進(jìn)行建模,并在最終設(shè)計(jì)中加以考慮,但這往往需要多次交互才能達(dá)到需求沖突的平衡(參見“了解天線的規(guī)格和操作,第1 部分”和“了解天線的規(guī)格和操作,第2 部分”。
但對于緊湊的便攜式和手持設(shè)備,問題要復(fù)雜得多,因?yàn)樘炀€的周邊環(huán)境一直在變化。用戶在使用時(shí)可能朝不同的方向或靠近身體的不同部位(手腕、頭部或軀干)握持產(chǎn)品,或?qū)a(chǎn)品放在其他物體的附近。因此,天線處于次優(yōu)環(huán)境中,在此環(huán)境中,天線的有效阻抗和共振頻率會(huì)發(fā)生變化并導(dǎo)致性能下降。
當(dāng)天線的共振頻率發(fā)生偏移時(shí),其呈現(xiàn)給無線電前端剩余部分的阻抗也會(huì)偏離初始值,造成阻抗失配。阻抗失配會(huì)產(chǎn)生三種效應(yīng)。更多的能量從天線端子反射回來,而不是通過這些端子;由于負(fù)載牽引的原因,來自功率放大器(PA) 的輸出功率下降;以及天線的輻射效率由于容性負(fù)載而降低。
過去幾十年里,天線面臨的這一處境導(dǎo)致射頻鏈路預(yù)算不斷下降,從而影響了產(chǎn)品的性能。由于網(wǎng)絡(luò)和系統(tǒng)級性能的提升,這一性能降級沒有引起用戶的注意。更多的蜂窩基站、蜂窩基站天線波束形成的使用以及改進(jìn)的誤差校正技術(shù),在很大程度上對其進(jìn)行了補(bǔ)償。由于系統(tǒng)級需求和用戶需求不斷提高,尤其對于新興的5G 標(biāo)準(zhǔn),這類補(bǔ)償可能已經(jīng)“入不敷出”了。
與此情形相關(guān)的損耗模式有三種:吸收損耗、阻抗失配損耗和天線輻射效率損耗。吸收損耗可能高達(dá)8 到10 dB,并且目前為止我們對此無能為力。阻抗失配損耗約為1 到2 dB,而天線輻射效率損耗約為2 到3 dB??赏ㄟ^兩種方法來彌補(bǔ)阻抗失配和輻射效率損耗:更改天線的匹配電路和更改天線的諧振。
無線設(shè)備供應(yīng)商在其最新一代的設(shè)備中已經(jīng)解決了該問題。動(dòng)態(tài)調(diào)諧可以補(bǔ)償導(dǎo)致天線共振頻率發(fā)生偏移的頭部和手部效應(yīng)。這是通過使用閉環(huán)調(diào)諧周期減少天線與功率放大器(PA) 之間的失配以優(yōu)化功率傳輸來實(shí)現(xiàn)的(圖7)。
圖7:閉環(huán)調(diào)諧用于動(dòng)態(tài)修改阻抗匹配網(wǎng)絡(luò)以實(shí)現(xiàn)最優(yōu)性能及減少損耗。(圖片來源:Antennasonline.com)
在閉環(huán)調(diào)諧中,將會(huì)實(shí)時(shí)檢測不可避免的反射系數(shù)變化。方法是通過定向耦合器同時(shí)監(jiān)測天線端子上的正向功率和反射功率的幅度和相位(參見“微型定向耦合器可滿足緊湊型射頻應(yīng)用的需求”)。然后,系統(tǒng)將合成一個(gè)用于調(diào)整位于天線饋電點(diǎn)的匹配網(wǎng)絡(luò)的復(fù)數(shù)共軛,以增強(qiáng)前端與天線之間的射頻功率傳輸。這可以將損耗減少多達(dá)1 到3 dB。
這種閉環(huán)調(diào)諧方法盡管很有用,但也存在幾點(diǎn)不足。測量反射系數(shù)的幅度和相位,然后確定共軛匹配,這需要大量的計(jì)算周期和時(shí)間,或者需要使用查詢表。查詢表的速度較快,但精度較低。為實(shí)施復(fù)雜的匹配,需要采用復(fù)雜的匹配電路。使用此方法實(shí)現(xiàn)的性能提升通常為1 到3 dB。
閉環(huán)調(diào)諧的替代方法是孔調(diào)諧,該方法通常與阻抗匹配搭配使用。這種情況下,將以電氣方法更改天線尺寸(調(diào)諧狀態(tài)),將其諧振恢復(fù)到最大功率傳輸點(diǎn),而不是調(diào)整匹配網(wǎng)絡(luò)以適應(yīng)天線阻抗變化(圖8)。這需要大量小間距的調(diào)諧狀態(tài)。
圖8.經(jīng)過孔調(diào)諧的天線會(huì)動(dòng)態(tài)調(diào)整天線的諧振長度以最大限度減少損耗。(圖片來源:Antennasonline.com)
這種情況下,與閉環(huán)調(diào)諧一樣,將在天線的饋電端子處測量反射系數(shù)。接著,使用其中的一種方法執(zhí)行此測量,確定最佳的新調(diào)諧狀態(tài)。其中三種方法為標(biāo)量方法,只需使用簡單的定向耦合器監(jiān)測天線端子處的反射功率幅度,然后應(yīng)用不同的計(jì)算方法(被稱為平方擬合、閾值調(diào)整或凹點(diǎn)檢測)。
第四種方法基于矢量,并使用反射系數(shù)的幅度和相位來確定天線結(jié)構(gòu)的S 參數(shù)矩陣解,然后確定恢復(fù)天線的共振頻率所需的調(diào)諧器設(shè)置。通??蓽p少2 到4 dB 的損耗。與阻抗匹配結(jié)合使用,總體改進(jìn)范圍為3 到7 dB。
對設(shè)計(jì)成敗至關(guān)重要的建模和仿真
對于標(biāo)準(zhǔn)鞭形設(shè)計(jì)等外部天線,在設(shè)計(jì)周期的早期只有極少甚至不進(jìn)行任何性能建模。但對于芯片、PC 板印制線天線,甚至對于非??拷驮肼暦糯笃骰蚬β史糯笃鞯馁N片天線而言,天線仿真及其實(shí)現(xiàn)都至關(guān)重要。不可能僅通過構(gòu)建、測試、修改、重復(fù)和迭代就能找到合適的配置。不僅必須對天線進(jìn)行建模,還必須對整個(gè)周邊環(huán)境(PC 板、元器件、外殼甚至用戶的手或頭部位置)進(jìn)行建模和分析。
所幸的是,已經(jīng)有很多先進(jìn)的電磁場解算器應(yīng)用程序包能夠解決仿真問題。為其提供支持的是功能強(qiáng)大的PC 或基于云的計(jì)算平臺(tái),它們能夠運(yùn)行這些場解算器執(zhí)行分析所需的海量計(jì)算。這些場解算器還能通過最小值/最大值試驗(yàn)或跨多個(gè)變量的蒙特卡羅運(yùn)行,來分析設(shè)計(jì)容差的影響。它們可以顯示在GHz 頻率下即便幾分之一毫米的變化也能產(chǎn)生重大影響,實(shí)施“假設(shè)”分析以研究可能的設(shè)計(jì)變更產(chǎn)生的影響,以及突顯設(shè)計(jì)的不足或意外的特征。
總結(jié)
盡管天線的功能很簡單,但它是將電路中的電功率轉(zhuǎn)換為電磁場以及執(zhí)行反向轉(zhuǎn)換的復(fù)雜電磁傳感器。傳統(tǒng)的單元件天線(例如偶極和鞭形天線)現(xiàn)已增強(qiáng)為使用多層陶瓷、扁平貼片結(jié)構(gòu)甚至產(chǎn)品自身的PC 板的一個(gè)或多個(gè)天線。
將這些天線結(jié)合到緊湊型(通常為便攜式)產(chǎn)品,需要仔細(xì)分析整個(gè)系統(tǒng)和封裝,驗(yàn)證天線的理想化性能未受到過大的影響,并且能夠達(dá)成設(shè)計(jì)目標(biāo)。利用場解算器軟件可以做到這一點(diǎn),這類軟件能夠?yàn)閷?shí)際安裝中的電磁場和天線性能的詳細(xì)建模及相關(guān)計(jì)算提供有力的支持。
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級本
超級電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊