【導讀】在很多應用中,都需要用到能夠為負載提供適當功率的放大器;另外還需保持良好的直流精度,而負載的大小決定了目標電路的類型。精密運算放大器能驅(qū)動功率要求不足50 mW的負載,而搭配了精密運算放大器輸入級和分立功率晶體管輸出級的復合放大器可以用來驅(qū)動功率要求為數(shù)W的負載。 但是,在中等功率范圍內(nèi)卻沒有優(yōu)秀的解決方案。 在這個范圍內(nèi),不是運算放大器無法驅(qū)動負載,就是電路過于龐雜而昂貴。
最近在設(shè)計惠斯登電橋驅(qū)動器時,這種兩難處境更為明顯。激勵電壓直接影響失調(diào)和范圍,因此需要具有直流精度。這種情況下,源極電壓和電橋之間的容差不足1 mV。 若以7 V至15 V電源供電,則電路必須以單位增益將電橋從100 mV驅(qū)動至5 V。
使問題變得更為復雜的是,它能使用各種不同的橋式電阻 例如,應變計的標準阻抗為120 Ω或350 Ω。若采用120 Ω電橋,則放大器必須提供42 mA電流,才能保持5 V電橋驅(qū)動能力。 此外,電路驅(qū)動能力必須高達10 nF。 這是考慮電纜和電橋耦合電容后得到的數(shù)值。
放大器選擇
設(shè)計該電路的第一步,是選擇可以驅(qū)動負載的放大器。 其壓差(VOH) 在目標負載電流情況下,必須位于電路的可用裕量范圍內(nèi)。 針對該設(shè)計的最小電源電壓為7 V,最大輸出為5 V。若裕量為250 mV,則可用裕量(VDD – VOUT)等于1.75 V。目標負載電流為42 mA。
精密、雙通道運算放大器 ADA4661-2 具有軌到軌輸入和輸出特性。 該器件的大輸出級可驅(qū)動大量電流。 源電流為40 mA時,數(shù)據(jù)手冊中的壓差電壓規(guī)格為900 mV,因此可輕松滿足1.75 V裕量要求。
壓差限制了電路采用低壓電源工作,而功耗則限制了電路采用高壓電源工作。 可計算芯片升溫,確定最大安全工作溫度。 MSOP封裝簡化了原型制作,但LFCSP封裝的熱性能更佳,因此如有可能應當采用LFCSP封裝。 MSOP的熱阻(θJA) 等于142°C/W,LFCSP的熱阻等于83.5°C/W。 最大芯片升溫可通過將熱阻乘以最大功耗計算得到。 當電源為15 V且輸出為5 V時,裕量為10 V。最大電流為42 mA,因此功耗為420 mW。 最終的芯片升溫(MSOP為60°C,LFCSP為35°C)限制最大環(huán)境溫度為65°C (MSOP)以及90°C (LFCSP)。
為保持精確的電橋激勵電壓,芯片和封裝的組合熱性能同樣十分重要。 不幸的是,驅(qū)動大輸出電流時,某些運算放大器的性能下降明顯。 輸出級功耗使得芯片上的溫度梯度極大,從而導致匹配晶體管和調(diào)節(jié)電路之間的不平衡。 ADA4661-2設(shè)計用于驅(qū)動大功率,同時抑制這些溫度梯度。
反饋環(huán)路穩(wěn)定
滿足負載-電容規(guī)格不容易,因為大部分運算放大器在不使用外部補償?shù)那闆r下無法驅(qū)動10 nF的容性負載。 驅(qū)動大容性負載的一種經(jīng)典技巧,是使用多個反饋拓撲,如圖1所示。圖中隔離電阻RISO將放大器輸出和負載電容CLOAD隔離。 將輸出信號 VOUT 通過反饋電阻 RF進行回送,便能保持直流精度。 通過電容 CF反饋放大器輸出,可保持環(huán)路穩(wěn)定性。
如需使該電路有效,RISO 必須足夠大,以便總負載阻抗在放大器的單位增益頻率下表現(xiàn)出純阻性。 這是很困難的,因為該電阻上會有電壓下降。 通過分配最差情況下的剩余電壓裕量,可確定RISO 的最大值。 6.75 V電源以及5 V輸出允許1.75 V總壓差。 放大器 VOH 占用總壓差的900 mV,因此電阻上的壓降最高允許達到850 mV。 如此,便可將RISO 的最大值限制為20 Ω。2 nF負載電容在該放大器的單位增益交越頻率4 MHz處產(chǎn)生一個極點。 顯然,多反饋無法滿足該要求。
圖1. 多反饋拓撲
另一種穩(wěn)定重載緩沖器的方法是使用混合單位跟隨器拓撲,如圖2所示。這種方法通過降低反饋系數(shù),強迫反饋環(huán)路在較低頻率處發(fā)生交越,而非嘗試移除負載-電容形成的極點。 由于存在負載極點,因此會產(chǎn)生過多相移;通過強迫環(huán)路在發(fā)生過多相移之前完成交越,便可實現(xiàn)電路穩(wěn)定性。
T反饋系數(shù)是噪聲增益的倒數(shù),因此人們可能得出結(jié)論,認為這種方法擯棄了采用單位增益信號的原則。 若電路采用傳統(tǒng)反相或同相配置,那么這種觀點是正確的。但若對原理圖作深入考察,便會發(fā)現(xiàn)兩個輸入均被驅(qū)動。 分析該電路的一種簡便方法是將 –RF/RS 反相增益與 (1 + RF/RS)同相增益相疊加。 這樣便可得到以+1信號增益以及 (RS + RF)/RS噪聲增益工作的電路。 針對反饋系數(shù)和信號增益的獨立控制允許該電路穩(wěn)定任何大小的負載,但代價是電路帶寬。
然而,混合單位跟隨器電路具有某些缺點。 第一個問題是,噪聲增益在所有頻率下都很高,因此直流誤差(如失調(diào)電壓,VOS) 通過噪聲增益而放大。 這使得滿足直流規(guī)格的任務變得尤為艱難。 第二個缺點需對放大器的內(nèi)部工作原理有一定了解。 該放大器具有三級架構(gòu),采用級聯(lián)式米勒補償。 輸出級有自己的固定內(nèi)部反饋。 這使得外部反饋環(huán)路有可能實現(xiàn)穩(wěn)定,同時使輸出級反饋環(huán)路變得不穩(wěn)定。
圖2. 混合單位跟隨器拓撲
通過將兩個電路的工作原理相結(jié)合,便可解決這兩個缺點,如圖3所示。多反饋分隔低頻和高頻反饋路徑,并加入了足夠多的容性負載隔離,從而最大程度減少輸出級的穩(wěn)定性問題。 利用電橋電壓,通過反饋電阻 RF. 驅(qū)動低頻反饋。 利用放大器輸出,通過反饋電容 CF驅(qū)動高頻反饋。
在高頻時,電路還表現(xiàn)為混合單位跟隨器。 高頻噪聲增益由電容阻抗確定,數(shù)值等于 (CS + CF)/CF.該噪聲增益允許反饋環(huán)路在一個足夠低的頻率上完成交越,而負載電容不會降低該頻率處的穩(wěn)定性。 由于低頻噪聲增益為單位增益,因此可保持電路的直流精度。
圖3. 電橋驅(qū)動器原理圖
保持直流精度要求十分留意信號走線,因為電路中存在大電流。 從42 mA的最大負載電流中,僅需7 mΩ 即可產(chǎn)生300 µV壓降;該誤差已相當于放大器的失調(diào)電壓。
解決這個問題的一種典型方法是使用 4線開爾文連接,利用兩個載流連接(通常稱為"強制")驅(qū)動負載電流,另外兩線為電壓測量連接(通常稱為"檢測")。 檢測連接必須盡可能靠近負載,以防任何負載電流流過。
對于橋式驅(qū)動器電路而言,檢測連接應在電橋的頂部和底部直接實現(xiàn)。 在負載和檢測線路之間不應共享任何PCB走線或線纜。 GNDSENSE連接應當經(jīng)路由后回到電壓源 VIN。 例如,假設(shè)激勵為DAC,則 GNDSENSE 應當連接DAC的REFGND。電橋的GNDFORCE 連接應當具有專用的走線并一路連接回到電源,因為允許橋式電流流過接地層將產(chǎn)生不必要的壓降。
誤差預算
該電路的直流誤差預算如表1所示,主要由放大器的失調(diào)電壓和失調(diào)電壓漂移所決定。 它假定工作條件處于最差情況范圍內(nèi)。 總誤差滿足1 mV要求,并大幅優(yōu)于該要求。
表1. 誤差預算
表中的第三項表示功耗誤差。 放大器功耗會增加芯片溫度,因此與環(huán)境溫度下的無負載電流情況相比,失調(diào)電壓產(chǎn)生漂移。 最差情況下的誤差計算采用最高電源電壓、最高輸出電壓以及最低阻性負載,如等式1所示。注意,放大器上的最差情況壓降通過 RISO電阻得以部分降低。
直流測量結(jié)果
誤差電壓等于輸入電壓 VIN, 和負載電壓 VOUT之差。 圖4顯示原型電路的誤差電壓與負載電壓的關(guān)系。 橋式驅(qū)動器電路中的最大誤差源是失調(diào)電壓和失調(diào)電壓漂移。 由于放大器功耗而產(chǎn)生的額外誤差與橋式電壓有關(guān)。 電源電壓對功耗的影響可從不同顏色的曲線中看出來。 黑色曲線功耗最低(50 mW),電源電壓最小(7 V)。 芯片僅升溫7°C,因而該曲線代表室溫失調(diào)電壓與該器件共模電壓的關(guān)系。
圖4. 誤差電壓與輸出電壓的關(guān)系
色(10 V)和藍色(15 V)曲線分別代表175 mW最大功耗和385 mW最大功耗下的性能。 隨著輸出電壓的上升,額外的功耗使芯片升溫25°C至55°C,導致失調(diào)電壓發(fā)生漂移。 該額外熱誤差曲線形狀為拋物線形,因為當 VOUT 為 VDD一半時,具有最大功耗。
電源在很大程度上依賴失調(diào)電壓,這表示應當考慮該電路的電源抑制。 圖5顯示掃描電源電壓并固定輸出電壓時的誤差電壓。 黑色曲線表示輕載情況,此時放大器電源抑制(PSR)起主要作用。 就該器件而言,10 µV變化表示118 dB PSR。 紅色和藍色曲線顯示輸出消耗額外功耗(由于負載為350 Ω和120 Ω典型橋式電阻)的結(jié)果。紅色和藍色曲線的有效PSR分別為110 dB和103 dB。
圖5. 誤差電壓與電源電壓的關(guān)系
該電路性能顯然取決于失調(diào)漂移與溫度的關(guān)系。目前為止,在所有與溫度有關(guān)的誤差計算中均采用了TCVOS 規(guī)格。 需要為該假設(shè)找到合理的解釋,因為芯片溫度由于放大器功耗與環(huán)境溫度的改變有所不同而上升。 前者在芯片表面形成較大的溫度梯度,影響放大器的微妙平衡。 這些梯度會使失調(diào)電壓漂移相比數(shù)據(jù)手冊規(guī)格而言要差得多。 ADA4661-2經(jīng)特殊設(shè)計,其功耗極大且不影響失調(diào)漂移性能。
圖6顯示失調(diào)漂移測量值與溫度的關(guān)系。額定性能重現(xiàn)于黑色曲線,并具有低電源電壓與高阻性負載(–1.2 µV/°C)。 紅色曲線顯示120 Ω橋式負載結(jié)果。 值得注意的是,曲線的形狀未發(fā)生改變;它僅僅由于芯片升溫(6.4°C)而向左平移。 藍色曲線顯示電源電壓上升至15 V時的結(jié)果——此時可測量電路的最大功耗。 同樣地,曲線形狀不發(fā)生改變,但由于芯片升溫55°C而向左平移。 內(nèi)部功耗已知(385 mW),因此可計算系統(tǒng)的實際熱阻 (θJA),即143°C/W。 重要的是需考慮工作的環(huán)境溫度范圍。 最大芯片溫度不應超過125°C;這意味著對于最差情況負載而言,最大環(huán)境溫度為70°C。
圖6. 誤差電壓與環(huán)境溫度的關(guān)系
瞬態(tài)測量結(jié)果
電路的階躍響應是評估環(huán)路穩(wěn)定性的簡便方法。 圖7顯示高電阻電橋在容性負載范圍內(nèi)的階躍響應測量值;圖8顯示低電阻電 橋在同樣條件下的測量值。 由于反饋網(wǎng)絡的極點-零點二聯(lián)效應 ,該電路的階躍響應具有過沖特性。 該二聯(lián)響應存在于基波中,因為電路反饋系數(shù)從低頻時的單位增益下降至高頻時的0.13。 由于零點相較極點而言處于更高的頻率,階躍響應將始終過沖,哪怕相位裕量遠大于適當值。 此外,二聯(lián)效應在電路中具有最大的時間常數(shù),因此趨向于對建立時間產(chǎn)生主要影響。 當采用高阻性負載以及1 nF容性負載時,電路具有最差情況下的穩(wěn)定性以及輸出級振鈴。
圖7. 無負載階躍響應
圖8. 有負載階躍響應
結(jié)論
本文所示之負載驅(qū)動器電路可為低至120 Ω的阻性負載施加5 V電壓,而總誤差不超過1 mV,并且能穩(wěn)定驅(qū)動高達10 nF總電容。 電路符合其額定性能,并能以7 V至15 V的寬范圍電源供電,功耗接近400 mW。 通過以±7 V電源為放大器供電,該基本電路便可擴展驅(qū)動正負載和負負載。 全部性能通過一個3 mm × 3 mm小型放大器以及四個無源元件即可實現(xiàn)。
推薦閱讀: