- 基于激光雷達(dá)回波寬度;
- 基于激光雷達(dá)反射強(qiáng)度信息形成的灰度圖,或者根據(jù)強(qiáng)度信息與高程信息配合,過濾出無效信息;
- 激光雷達(dá)SLAM與高精度地圖配合,不僅檢測(cè)車道線還進(jìn)行自車定位;
- 利用激光雷達(dá)能夠獲取路沿高度信息或物理反射信息不同的特性,先檢測(cè)出路沿,因?yàn)榈缆穼挾仁且阎鶕?jù)距離再推算出車道線位置。對(duì)于某些路沿與路面高度相差低于3厘米的道路,這種方法無法使用。
激光雷達(dá)檢測(cè)車道線的4種方法
發(fā)布時(shí)間:2017-12-05 來源:周彥武 責(zé)任編輯:wenwei
【導(dǎo)讀】因此自2008年后,學(xué)術(shù)界已經(jīng)很少研究基于視覺系統(tǒng)的車道線檢測(cè),轉(zhuǎn)而利用激光雷達(dá)檢測(cè)車道線,激光雷達(dá)可以解決基于視覺系統(tǒng)的車道線檢測(cè)有諸多缺陷,包括車道線被水覆蓋,激光雷達(dá)最大可穿越70米的水深。
基于視覺系統(tǒng)的車道線檢測(cè)有諸多缺陷。
首先,視覺系統(tǒng)對(duì)背景光線很敏感,諸如陽光強(qiáng)烈的林蔭道,車道線被光線分割成碎片,致使無法提取出車道線。
其次,視覺系統(tǒng)需要車道線的標(biāo)識(shí)完整,有些年久失修的道路,車道線標(biāo)記不明顯,不完整,有些剛開通幾年的道路也是如此。
第三,視覺系統(tǒng)需要車道線的格式統(tǒng)一,這對(duì)按照模型庫(kù)識(shí)別車道線的系統(tǒng)尤其重要,有些車道線格式很奇特,比如藍(lán)顏色的車道線,很窄的車道線,模型庫(kù)必須走遍全國(guó)將這些奇特的車道線一一收錄,才能保證順利檢測(cè)。
再次,視覺系統(tǒng)無法對(duì)應(yīng)低照度環(huán)境,尤其是沒有路燈的黑夜。一般LKW要求時(shí)速在72公里以上才啟動(dòng),原因之一是速度比較高時(shí)人不會(huì)輕易換道,另一個(gè)原因就是比較低的車速意味著視覺系統(tǒng)的取樣點(diǎn)不足,擬合的車道線準(zhǔn)確度較低。而激光雷達(dá)的有效距離一般是視覺系統(tǒng)的4-5倍,有效的采樣點(diǎn)比較多,車速較低時(shí)檢測(cè)準(zhǔn)確度遠(yuǎn)高于視覺系統(tǒng)。
最后,如果車道線表面被水覆蓋,視覺系統(tǒng)會(huì)完全無效。視覺系統(tǒng)最大的優(yōu)點(diǎn)就是成本低。因此自2008年后,學(xué)術(shù)界已經(jīng)很少研究基于視覺系統(tǒng)的車道線檢測(cè),轉(zhuǎn)而利用激光雷達(dá)檢測(cè)車道線,激光雷達(dá)可以解決上述所有問題,包括車道線被水覆蓋,激光雷達(dá)最大可穿越70米的水深。
激光雷達(dá)唯一的缺點(diǎn)就是成本太高。
基于雷達(dá)掃描點(diǎn)密度的車道線檢測(cè)
早期激光雷達(dá)檢測(cè)車道線是基于雷達(dá)掃描點(diǎn)密度的車道線檢測(cè)方法,該方法通過獲取雷達(dá)掃描點(diǎn)的坐標(biāo)并轉(zhuǎn)換成柵格圖,用原始數(shù)據(jù)映射柵格圖,可以是直接坐標(biāo)柵格圖也可以是極坐標(biāo)柵格圖。
按照后期處理需要進(jìn)行選擇,極坐標(biāo)柵格圖被直接用于車道線識(shí)別,即有多個(gè)點(diǎn)映射的柵格就被認(rèn)為是車道線點(diǎn),該識(shí)別方法對(duì)特征提取的要求很高,且受距離影響嚴(yán)重,因?yàn)闃O坐標(biāo)柵格距離越近柵格精度越高,車道線識(shí)別的精度越高,距離越遠(yuǎn)柵格精度越低導(dǎo)致識(shí)別車道線的精度就越低然后利用柵格圖中點(diǎn)的密度提取車道線。
對(duì)于點(diǎn)密度的求取可以采用直方圖統(tǒng)計(jì)的方式,通過直方圖統(tǒng)計(jì)點(diǎn)密度快捷直觀,容易理解。由于基于掃描點(diǎn)密度的檢測(cè)方法沒有很復(fù)雜的中間過程,所以實(shí)時(shí)性高,在快速檢測(cè)中受到大家的青睞。
但是該方法只獲取了掃描點(diǎn)的位置信息,對(duì)于雷達(dá)反饋的其他信息都沒有進(jìn)一步分析,容易把一些與車道線掃描點(diǎn)密度類似的道路信息混進(jìn)車道線檢測(cè)結(jié)果中;或者在車道線與其他障礙物靠近或重合時(shí),無法區(qū)分出障礙物和車道線,他們只能被當(dāng)作一個(gè)整體保留或剔除。
所以此方法的抗干擾能力差,容易出現(xiàn)誤檢。這種方法目前已經(jīng)不常使用。
激光雷達(dá)檢測(cè)車道線的四種方法
目前激光雷達(dá)檢測(cè)車道線主要有四種方法:
后三種方法需要多線激光雷達(dá),最少也是16線激光雷達(dá)。前者可以使用4線或單線激光雷達(dá),考慮到奧迪A8已經(jīng)開始使用4線激光雷達(dá),4線激光雷達(dá)已經(jīng)進(jìn)入實(shí)用階段。
當(dāng)然,這四種方法也可以混合使用。
車道線檢測(cè)兩步走
車道線檢測(cè)基本分兩部走:提取幾何或物理特征,利用離散數(shù)據(jù)擬合成車道線。無論是視覺還是激光雷達(dá),通常都是用最小二乘法擬合車道線。
離散數(shù)據(jù)擬合車道線
Ibeo是最適合第一種方法的激光雷達(dá)。Ibeo的激光雷達(dá)特有三次回波技術(shù)。每點(diǎn)激光返回三個(gè)回波,返回信息能夠更加可靠地還原被測(cè)物體,同時(shí)能夠精確分析相關(guān)物體數(shù)據(jù),并能識(shí)別雨、霧、雪等不相關(guān)物體的數(shù)據(jù)。
如圖所示,其中W表示回波脈沖寬度,d表示掃描目標(biāo)的距離。反射率作為物體的固有屬性,受物體材質(zhì)、顏色等的影響,能夠很好地反映物體特征,不同顏色。
密度的物體的反射率都有一定的差異,物體反射率決定Ibeo回波脈沖寬度特性,路面和車道線有著明顯的差異,所以可以利用回波脈沖寬度的差異對(duì)目標(biāo)進(jìn)行區(qū)分。
上圖為典型的車道線標(biāo)識(shí)
回波寬度
很明顯,路面的回波寬度在2米左右,車道線的回波寬度在4米左右。
根據(jù)Ibeo的特性知道其垂直方向上的掃描角度為3.2度,共分四層掃描,即每層0.8度,在Ibeo水平安裝的情況下,并考慮到實(shí)際情況一一Ibeo的高度受車體的限制,其下面兩層(一、二層)主要返回道路表面的信息,而上面兩層(三、四層)主要返回有一定高度的道路信息。
根據(jù)激光雷達(dá)的特性知道激光束掃描到物體會(huì)立即產(chǎn)生回波,一二兩層的掃描距離遠(yuǎn)小于三四兩層。
通過理論分析和實(shí)驗(yàn)驗(yàn)證可知一二兩層返回的信息主要包括路面、車道線、少量障礙物和邊界數(shù)據(jù);三四兩層主要返回道路邊界、障礙物和少量路表信息,所以在特征種子點(diǎn)提取階段需要重點(diǎn)分析一二兩層的雷達(dá)數(shù)據(jù),這部分?jǐn)?shù)據(jù)中對(duì)于車道線檢測(cè)最大的干擾在于路面,提取車道線種子點(diǎn)特征的重點(diǎn)就是分離車道線特征與路面特征。
最小二乘法擬合車道線
通過最小類內(nèi)方差算法找到路面與車道線的分割閾值,利用誤差分析原理剔除車道線集合范圍內(nèi)的粗大誤差,即剔除干擾信息,提取出車道線特征種子點(diǎn)。然后再擬合成車道線。
最小類內(nèi)方差是一種自適應(yīng)閾值的求取方法,也是一種模糊聚類方法。其基本思想是使用一個(gè)閾值將整體數(shù)據(jù)分成兩個(gè)類,因?yàn)榉讲钍菙?shù)值分布是否均勻的度量,兩個(gè)類的內(nèi)部的方差和越小則每一類內(nèi)部的差別就越小,那么兩個(gè)類之間的差別就越大。
如果存在一個(gè)閾值使得類內(nèi)方差和最小則說明這個(gè)閾值就是劃分兩類的最佳閡值,使用最佳閾值劃分意味著劃分兩類出現(xiàn)偏差的概率最小。
通過回波脈沖寬度利用最小類內(nèi)方差算法建模分割車道線特征與路面特征,剔除車道線特征提取的最大干擾。對(duì)回波脈沖寬度進(jìn)行統(tǒng)計(jì)分析,并劃分脈沖寬度級(jí)別,因?yàn)橹苯邮褂妹}沖寬度值其分布不利于統(tǒng)計(jì),采用對(duì)脈沖寬度平均區(qū)域劃分即脈沖寬度級(jí),統(tǒng)計(jì)各級(jí)內(nèi)的點(diǎn)數(shù),從而得到回波脈沖寬度分布直方圖。再利用諸如模糊聚類分析方法剔除干擾值。
最小二乘法近似求解不斷優(yōu)化靠近真實(shí)值的數(shù)學(xué)方法,它可以利用己知數(shù)據(jù)簡(jiǎn)便地求得未知數(shù)據(jù),并不斷優(yōu)化保證求得的數(shù)據(jù)與真實(shí)數(shù)據(jù)問的誤差的平方和最小。
利用最小二乘法擬合曲線,就是不斷優(yōu)化求取某條曲線使其最能體現(xiàn)已有數(shù)據(jù)點(diǎn)的變化趨勢(shì),具體過程是利用已知的數(shù)據(jù)點(diǎn)優(yōu)化求取最優(yōu)的未知數(shù)據(jù)合成一條最佳的曲線,并保證已有數(shù)據(jù)點(diǎn)到曲線的距離的平方和最小。
也就是說,曲線擬合不要求近似曲線過所有數(shù)據(jù)點(diǎn),只需要己知的數(shù)據(jù)點(diǎn)都距離在這條曲線的不遠(yuǎn)處,即這條曲線能反映數(shù)據(jù)點(diǎn)的整體分布,又不至于出現(xiàn)較大的局部波動(dòng),已知數(shù)據(jù)與曲線的偏差的平方和達(dá)到最小就能有效控制波動(dòng)。
簡(jiǎn)而言之,最小二乘法擬合就是利用最小化誤差的平方和求取數(shù)據(jù)的最佳函數(shù)匹配。
基于激光雷達(dá)反射強(qiáng)度信息
根據(jù)反射強(qiáng)度值做的車道線檢測(cè),在車載激光雷達(dá)獲取的道路周圍環(huán)境點(diǎn)云數(shù)中,可以輕松區(qū)分出道路與車道線。
具體到車載激光雷達(dá)獲取的道路周圍環(huán)境三維點(diǎn)云數(shù)據(jù)中,可以看作一個(gè)局部均值變點(diǎn)模型,每一激光層采集的可行駛區(qū)域內(nèi)回波強(qiáng)度值就是一組輸出序列,其回波強(qiáng)度值變化的點(diǎn)就是所要求的車道標(biāo)線點(diǎn)集。
現(xiàn)在只須在每一激光層采集的可行駛區(qū)域內(nèi)回波強(qiáng)度值輸出序列中檢測(cè)是否有變化點(diǎn),若存在則標(biāo)記并提取這些變點(diǎn)?;谲囕d雷達(dá)獲取的智能車感興趣區(qū)域內(nèi)海量點(diǎn)云數(shù)據(jù)中的T坐標(biāo)值有一定高程特點(diǎn)進(jìn)行濾波,確定可行駛區(qū)域進(jìn)而剔除與車道標(biāo)線回波強(qiáng)度值相近的障礙物。
上圖為簡(jiǎn)單濾波后粗提取的車道線回波強(qiáng)度值投影圖(全局圖)
由于車載激光雷達(dá)獲取的道路周圍環(huán)境點(diǎn)云數(shù)據(jù)是分層存儲(chǔ)的,不同激光層獲取的道路周圍環(huán)境點(diǎn)云數(shù)據(jù)相鄰兩點(diǎn)間距與到雷達(dá)坐標(biāo)系原點(diǎn)的距離有關(guān)。
距離越遠(yuǎn)間距越大,考慮到安裝在正常行駛上的激光雷達(dá)獲取的車道標(biāo)線曲率變較小,所以利用文獻(xiàn)提出的基于車道標(biāo)線方向的EM最大期望聚類算法對(duì)粗提取車道標(biāo)線點(diǎn)云數(shù)據(jù)進(jìn)行聚類。
通過在聚類過程中估計(jì)車道標(biāo)線方向來對(duì)粗提取的車道標(biāo)線點(diǎn)云數(shù)據(jù)集進(jìn)行分類去噪。然后再利用最小二乘法進(jìn)行車道線擬合。
再來看先檢測(cè)路沿,再根據(jù)路寬推測(cè)車道線的方法。
激光雷達(dá)通過以太網(wǎng)與計(jì)算機(jī)連接,點(diǎn)云數(shù)據(jù)以 UDP 的方式進(jìn)行發(fā)送。激光雷達(dá)的數(shù)據(jù)通過兩個(gè)端口發(fā)送出來,端口 2368 負(fù)責(zé)發(fā)送點(diǎn)云數(shù)據(jù),端口 8308 發(fā)送 GPS 數(shù)據(jù)還有位置數(shù)據(jù)。根據(jù)廠商提供的數(shù)據(jù)包格式說明,每個(gè)數(shù)據(jù)包包含有效數(shù)據(jù)的載荷以及狀態(tài)數(shù)據(jù)。
一個(gè)數(shù)據(jù)包集合 12 次發(fā)射接收到的所有數(shù)據(jù),接收到的距離以及強(qiáng)度信息是按照錯(cuò)開的順序進(jìn)行接收的( 0, 16, 1, 17, 2, 18...15,31)。
根據(jù)數(shù)據(jù)包的格式,進(jìn)行相應(yīng)的接收和存儲(chǔ)。點(diǎn)云數(shù)據(jù)包含到一束激光點(diǎn)達(dá)到反射點(diǎn)反饋到的距離信息、強(qiáng)度信息以及偏轉(zhuǎn)角度,由此可以得到反射點(diǎn)到激光雷達(dá)中心的距離、垂直平面上的角度以及水平面上的角度。
若使用車輪與地面接觸的四個(gè)點(diǎn)所在的平面作為空間直角坐標(biāo)系的 xOy 平面,通過激光雷達(dá)中心所在位置并且垂直于 xOy 平面的一條直線作為 z 軸,由此便構(gòu)成了如圖的空間坐標(biāo)系。
利用點(diǎn)云數(shù)據(jù), distance 表示激光點(diǎn)到激光雷達(dá)中心的直線距離,α是垂直方向上的夾角, β是水平方向上的夾角。
由于雷達(dá)內(nèi)部發(fā)射器之間存在偏差(如圖 3-(b)),需要進(jìn)行內(nèi)部校 正 , calibration_x 、 calibration_y 以 及calibration_z 分別為在 xyz 方向上所對(duì)應(yīng)的內(nèi)部校正參數(shù),通過公式求得每個(gè)點(diǎn)在空間中的坐標(biāo)( x, y, z)。
依次遍歷每一個(gè)數(shù)據(jù)點(diǎn),就可以完成對(duì)激光雷達(dá)數(shù)據(jù)的解析,利用接收到的數(shù)據(jù)重構(gòu)出 3D點(diǎn)云。多線激光雷達(dá)采集到的 3D 點(diǎn)云數(shù)據(jù)能夠提供了大量的信息,但是處理這些數(shù)據(jù)也帶來了巨大的運(yùn)算量,這是造成許多基于多線激光雷達(dá)的算法實(shí)時(shí)性比較差的重要原因。
劃分網(wǎng)格提升激光雷達(dá)實(shí)用性與可用性
因此,減少運(yùn)算量是提升多線激光雷達(dá)的實(shí)時(shí)性與可用性的關(guān)鍵。對(duì)于這個(gè)問題,通過劃分網(wǎng)格的方法,減少運(yùn)算量。
一種網(wǎng)格是方框型,一種是扇形。
方形網(wǎng)格是以激光雷達(dá)的位置(或者說車體位置為)地圖中心,將激光雷達(dá)周圍的環(huán)境劃分為大小相等的網(wǎng)格。進(jìn)行方形網(wǎng)格劃分之后,將解析雷達(dá)數(shù)據(jù)得到的 3D點(diǎn)云投影到網(wǎng)格當(dāng)中。扇形網(wǎng)格是以激光雷達(dá)的位置為圓心,用不同的半徑的同心圓將激光雷達(dá)周圍的環(huán)境進(jìn)行劃分。
一個(gè)網(wǎng)格是由同心圓以及從圓心出發(fā)的射線組成如圖中的紅色部分。因?yàn)榧す饫走_(dá)可以測(cè)量的最大范圍可以到達(dá) 80 米到 100 米,所以設(shè)置最大的一個(gè)同心圓的半徑為 80 米,最小的同心圓的半徑為 0.5米, 相鄰?fù)膱A半徑差作為一個(gè)參數(shù),將 3D點(diǎn)云中的每個(gè)點(diǎn)投影到網(wǎng)格當(dāng)中。
基于方形網(wǎng)格的劃分,將全圖分割為大小相同的網(wǎng)格,對(duì)于遠(yuǎn)近的障礙物處理比較公平;缺點(diǎn)是運(yùn)算量大?;谏刃尉W(wǎng)格進(jìn)行劃分,呈現(xiàn)近處網(wǎng)格小而密集,從圓心開始越往外,網(wǎng)格越大。
扇形網(wǎng)格的優(yōu)勢(shì)在于對(duì)于近處的障礙物有良好的精度,能夠分辨較小的障礙物,在減少運(yùn)算量的同時(shí)對(duì)障礙物的處理有所側(cè)重,缺點(diǎn)在于可能無法識(shí)別遠(yuǎn)處的較小的障礙物。
利用激光雷達(dá)獲取路沿高度信息或物理反射信息
常見的路沿有人行道的路沿石、綠化帶、隔離柵欄、雪糕桶等,除此之外,道路環(huán)境中,常見的障礙物還有路燈、行道樹、消防栓、垃圾桶等。因此,路沿識(shí)別,需要找到人行道、綠化帶、隔離柵欄、雪糕桶這類物體。
道路環(huán)境中的物體的高度大致可以分為三個(gè)層次,路燈、行道樹等物體高度分類為高,綠化帶、隔離柵欄、雪糕桶、消防栓等物體高度分類為中,人行道旁邊的路沿石的高度則劃分為低。
因此將高度作為篩選路沿的第一個(gè)特征但是,如果直接使用每個(gè)點(diǎn)的高度信息,接下來做聚類處理時(shí)會(huì)產(chǎn)生巨大的運(yùn)算量,因此在上一步進(jìn)行網(wǎng)格劃分之后,就可以將點(diǎn)的聚類轉(zhuǎn)為對(duì)網(wǎng)格的聚類。
由于網(wǎng)格的數(shù)量遠(yuǎn)遠(yuǎn)小于點(diǎn)的數(shù)量,因而可以大大減少聚類所需要的運(yùn)算量。因此要將點(diǎn)的高度信息映射為網(wǎng)格的高度信息。
完成高程信息統(tǒng)計(jì)以后, 會(huì)出現(xiàn)一個(gè)明顯的問題:行道樹會(huì)有一些樹枝延伸到道路上,此時(shí),高程信息會(huì)顯示路上有障礙物,實(shí)質(zhì)上由于樹枝是懸空的,并不會(huì)阻礙汽車的正常的行駛,因此,需要對(duì)這一類誤判的障礙物進(jìn)行中空識(shí)別,并將這一部分重新劃分為可行駛區(qū)域。
算法的思路是,遍歷每個(gè)標(biāo)定為障礙物的網(wǎng)格,檢測(cè)網(wǎng)格內(nèi)的點(diǎn)的高度分布, 如果在地面以上 10cm(障礙物高度) 至地面以上 2.4 米(激光雷達(dá)的頂端距離地面的高度)之內(nèi)的點(diǎn)進(jìn)行統(tǒng)計(jì),如果數(shù)量少于 10%,則認(rèn)為該網(wǎng)格是中空的障礙物網(wǎng)格,車輛能夠正常通過,因此重新將該網(wǎng)格歸為可通行區(qū)域。
在高度信息統(tǒng)計(jì),給每一個(gè)網(wǎng)格維護(hù)一個(gè)標(biāo)志位,該標(biāo)志位用來指示網(wǎng)格是否符合常見路沿的高度限制要求。
如果滿足,則該標(biāo)志位為真,否則為假。完成了所有的障礙物高度信息統(tǒng)計(jì)以后,也就是對(duì)所有的網(wǎng)格都進(jìn)行了標(biāo)記,此時(shí)考慮路沿的第二個(gè)特征:在一段距離內(nèi)維持相似高度。
只滿足路沿的第一特征的物體可能會(huì)是消防栓、路過的小孩和垃圾箱等物品,因此需要路沿的第二個(gè)特征進(jìn)行進(jìn)一步區(qū)分,將鄰近網(wǎng)格聚類成群落,當(dāng)群落中的網(wǎng)格的數(shù)量大于路沿的連續(xù)閾值時(shí),才能認(rèn)為是路沿。
聚類流程如圖所示,遞歸地搜索所有網(wǎng)格, 直到周圍沒有新的可聚類網(wǎng)格就終止。 如果一個(gè)標(biāo)志位為真的網(wǎng)格的鄰近網(wǎng)格的標(biāo)志位同樣為真,就將它放入集群當(dāng)中。進(jìn)行群落檢查的時(shí)候,如果群落中的網(wǎng)格數(shù)大于設(shè)定的閾值,則可認(rèn)為是路沿。
我國(guó)高速公路設(shè)計(jì)標(biāo)準(zhǔn)為, 車道寬度 3.75米,應(yīng)急車道為 2.5 米。如圖所示, L1 為激光雷達(dá)檢測(cè)的車體到左側(cè)路沿的距離, L2 為激光雷達(dá)檢測(cè)的車體到右側(cè)激光雷達(dá)的距離,
設(shè)道面總寬度 L, 則 L 可由公式得到:L = L1 + L2 。考慮到并非所有的所有道路均設(shè)置緊急車道,使用求模運(yùn)算進(jìn)行估計(jì),設(shè)余數(shù)為 M,則余數(shù)M 可由公式得到:M = L % 3.75。
如果 M 約等于 2.5,則認(rèn)為存在應(yīng)急車道,否則認(rèn)為不存在。若存在時(shí),路面寬度由公式L = L − 2.5,設(shè)車道數(shù)為 N,使用路面寬度除以 3.75,并向下取整,因?yàn)樵诘缆吩O(shè)計(jì)中,路面與路沿之間存在一小段距離,則車道數(shù)可有公式N = ⌊L⁄3.75⌋計(jì)算出,根據(jù)車道數(shù)即可劃分出車道線,車道線的寬度一般為15-20厘米。
由于車道與路沿的距離長(zhǎng)短不一,因此這種方法在非標(biāo)準(zhǔn)道路上準(zhǔn)確度不高,倒是路沿的檢測(cè)準(zhǔn)確度比較高。
小結(jié)
未來固態(tài)激光雷達(dá)也很適合檢測(cè)車道線,固態(tài)激光雷達(dá)的FOV比較窄反而是個(gè)優(yōu)勢(shì),等于過濾掉了很多無關(guān)數(shù)據(jù)。
不過單光子激光雷達(dá)通常采用計(jì)數(shù)器的方式讀出數(shù)據(jù),不能檢測(cè)回波強(qiáng)度或回波寬度,不能檢測(cè)車道線。線性APD固態(tài)激光雷達(dá)就很合適。
(本文轉(zhuǎn)載自雷鋒網(wǎng),作者系佐思產(chǎn)研研究總監(jiān)周彥武)
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器