模擬設(shè)計(jì)中噪聲分析的11個(gè)誤區(qū)(一)
發(fā)布時(shí)間:2019-07-15 責(zé)任編輯:wenwei
【導(dǎo)讀】噪聲是模擬電路設(shè)計(jì)的一個(gè)核心問題,它會(huì)直接影響能從測(cè)量中提取的信息量,以及獲得所需信息的經(jīng)濟(jì)成本。遺憾的是,關(guān)于噪聲有許多混淆和誤導(dǎo)信息,可能導(dǎo)致性能不佳、高成本的過度設(shè)計(jì)或資源使用效率低下。今天我們就聊聊關(guān)于模擬設(shè)計(jì)中噪聲分析的11個(gè)由來已久的誤區(qū)。
誤區(qū)一:降低電路中的電阻值總是能改善噪聲性能
噪聲電壓隨著電阻值提高而增加,二者之間的關(guān)系已廣為人知,可以用約翰遜噪聲等式來描述:
erms:均方根電壓噪聲。
k:玻爾茲曼常數(shù)。
T:溫度(單位為K)。
R:電阻值,B為帶寬。
這讓許多工程師得出結(jié)論:為了降低噪聲,應(yīng)當(dāng)降低電阻值。雖然這常常是正確的,但不應(yīng)就此認(rèn)定它是普遍真理,因?yàn)樵谟行├又校^大的電阻反而能夠改善噪聲性能。
在大多數(shù)情況下,測(cè)量電流的方法是讓它通過一個(gè)電阻,然后測(cè)量所得到的電壓。根據(jù)歐姆定律V= I×R,產(chǎn)生的電壓與電阻值成正比,但正如上式所示,電阻的約翰遜噪聲與電阻值的平方根成正比。由于這個(gè)關(guān)系,電阻值每提高一倍,信噪比可提高3dB。在產(chǎn)生的電壓過大或功耗過高之前,此趨勢(shì)一直是正確的。
誤區(qū)二:所有噪聲源的噪聲頻譜密度可以相加;帶寬可以在最后計(jì)算時(shí)加以考慮
將多個(gè)噪聲源的噪聲頻譜密度()加總(電壓噪聲源按平方和開根號(hào)),而不分別計(jì)算各噪聲源的rms噪聲,可以節(jié)省時(shí)間,但這種簡(jiǎn)化僅適用于各噪聲源帶寬相同的情況。如果各噪聲源的帶寬不同,簡(jiǎn)單加總就變成一個(gè)可怕的陷阱。
圖1:使用rms噪聲而不是頻譜密度進(jìn)行噪聲計(jì)算的理由
圖1顯示了過采樣系統(tǒng)中的情況。從噪聲頻譜密度看,系統(tǒng)總噪聲似乎以增益放大器為主,但一旦考慮帶寬,各級(jí)貢獻(xiàn)的rms噪聲其實(shí)非常相近。
誤區(qū)三:手工計(jì)算時(shí)必須包括每一個(gè)噪聲源
設(shè)計(jì)時(shí)有人可能忍不住要考慮每一個(gè)噪聲源,但設(shè)計(jì)工程師的時(shí)間是寶貴的,這樣做在大型設(shè)計(jì)中會(huì)非常耗時(shí)。全面的噪聲計(jì)算最好留給仿真軟件去做。
不過,設(shè)計(jì)人員如何簡(jiǎn)化設(shè)計(jì)過程需要的手工噪聲計(jì)算呢?答案是忽略低于某一閾值的不重要噪聲源。如果一個(gè)噪聲源是主要噪聲源(或任何其他折合到同一點(diǎn)的噪聲源)的1/5 erms,其對(duì)總噪聲的貢獻(xiàn)將小于2%,可以合理地予以忽略。設(shè)計(jì)人員常會(huì)爭(zhēng)論應(yīng)當(dāng)把該閾值選在哪里,但無(wú)論是 1/3、1/5還是1/10(分別使總噪聲增加5%、2%和0.5%),在設(shè)計(jì)達(dá)到足以進(jìn)行全面仿真或計(jì)算的程度之前,沒必要擔(dān)心低于該閾值的較小噪聲源。
誤區(qū)四:應(yīng)挑選噪聲為ADC 1/10的ADC驅(qū)動(dòng)器
模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)手冊(cè)可能建議利用噪聲為ADC 1/10左右的低噪聲ADC驅(qū)動(dòng)放大器來驅(qū)動(dòng)模擬輸入。但是,這并非總是最佳選擇。在一個(gè)系統(tǒng)中,從系統(tǒng)角度權(quán)衡ADC驅(qū)動(dòng)器噪聲常常是值得的。
首先,如果系統(tǒng)中ADC驅(qū)動(dòng)器之前的噪聲源遠(yuǎn)大于ADC驅(qū)動(dòng)器噪聲,那么選擇超低噪聲ADC驅(qū)動(dòng)器不會(huì)給系統(tǒng)帶來任何好處。換言之,ADC驅(qū)動(dòng)器應(yīng)與系統(tǒng)其余部分相稱。
其次,即使在只有一個(gè)ADC和一個(gè)驅(qū)動(dòng)放大器的簡(jiǎn)單情況下,權(quán)衡噪聲并確定其對(duì)系統(tǒng)的影響仍是有利的。通過具體數(shù)值可以更清楚地了解其中的理由。
考慮一個(gè)系統(tǒng)采用16位ADC,其SNR值相當(dāng)于100 µV rms噪聲,用作ADC驅(qū)動(dòng)器的放大器具有µV rms噪聲。按和方根加總這些噪聲源,得到總噪聲為100.5 rms,非常接近ADC單獨(dú)的噪聲??梢钥紤]下面兩個(gè)讓放大器ADC更為平衡的方案,以及它們對(duì)系統(tǒng)性能的影響:
如果用類似的18位ADC代替16位ADC,前者的額定SNR相當(dāng)于40 µV rms噪聲,則總噪聲變?yōu)?1 µV rms。
或者,如果保留16位ADC,但用更低功耗的放大器代替上述驅(qū)動(dòng)器,該放大器貢獻(xiàn)30 µV rms噪聲,則噪聲變?yōu)?04 µV rms。
就系統(tǒng)性能而言,以上兩種方案可能是比原始組合更好的選擇。關(guān)鍵是要權(quán)衡利弊以及其對(duì)系統(tǒng)整體的影響。
誤區(qū)五:直流耦合電路中必須始終考慮1/f噪聲
1/f噪聲對(duì)超低頻率電路是一大威脅,然而,許多直流電路的噪聲是以白噪聲源為主,1/f噪聲對(duì)總噪聲無(wú)貢獻(xiàn),因而不用計(jì)算1/f噪聲。
為了弄清這種效應(yīng),以一個(gè)放大器(其1/f噪聲轉(zhuǎn)折頻率fnc為10 Hz)為例。對(duì)于各種帶寬,計(jì)算10秒采集時(shí)間內(nèi)包含和不含1/f噪聲兩種情況下的電路噪聲,以確定不考慮1/f噪聲的影響。其中寬帶噪聲為:
● 當(dāng)帶寬為fnc的100倍時(shí),寬帶噪聲開始占主導(dǎo)地位;
● 當(dāng)帶寬超過fnc的1000倍時(shí),1/f噪聲微不足道。
現(xiàn)代雙極性放大器可以具有比10 Hz低很多的噪聲轉(zhuǎn)折頻率,零漂移放大器則幾乎完全消除了1/f噪聲。
圖2:1/f 噪聲影響與電路帶寬的關(guān)系示例
誤區(qū)六:因?yàn)?/f噪聲隨著頻率降低而提高,所以直流電路具有無(wú)限大噪聲
雖然直流對(duì)電路分析是一個(gè)有用的概念,但真實(shí)情況是,如果認(rèn)為直流是工作在0 Hz,那么實(shí)際上并不存在這樣的事情。隨著頻率越來越低,趨近0 Hz,周期會(huì)越來越長(zhǎng),趨近無(wú)限大。這意味著存在一個(gè)可以觀測(cè)的最低頻率,哪怕電路在理論上是直流響應(yīng)。該最低頻率取決于采集時(shí)長(zhǎng)或孔徑時(shí)間,也就是觀測(cè)器件輸出的時(shí)長(zhǎng)。如果一名工程師開啟器件并觀測(cè)輸出100秒,則其能夠觀測(cè)到的最低頻率偽像將是0.01 Hz。這還意味著,此時(shí)可以觀測(cè)到的最低頻率噪聲也是0.01 Hz。
現(xiàn)在通過一個(gè)數(shù)值例子來展開說明,考慮一個(gè)DC至1 kHz電路,連續(xù)監(jiān)控其輸出。如果在前100秒觀測(cè)到電路中一定量的1/f噪聲,從0.01 Hz至1 kHz(5個(gè)十倍頻程的頻率),則在30年(約1nHz,12個(gè)十倍頻程)中觀測(cè)到的噪聲量可計(jì)算為:
或者說比前100秒觀測(cè)到的噪聲多55%。這種增加幾乎沒有任何意義,即使考慮最差情況——1/f噪聲持續(xù)增加到1 nHz(目前尚無(wú)測(cè)量證據(jù))——也是如此。
理論上,如果沒有明確定義孔徑時(shí)間,1/f噪聲可以計(jì)算到一個(gè)等于電路壽命倒數(shù)的頻率。實(shí)踐中,電路在如此長(zhǎng)時(shí)間內(nèi)的偏差以老化效應(yīng)和長(zhǎng)期漂移為主,而不是1/f噪聲。許多工程師為直流電路的噪聲計(jì)算設(shè)定0.01或1 mHz之類的最低頻率,以使計(jì)算切合實(shí)際。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 邁向更綠色的未來:GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
- 精準(zhǔn)監(jiān)測(cè)電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器