經(jīng)驗分享:復(fù)雜電路的電源和接地優(yōu)化策略
發(fā)布時間:2015-06-04 責(zé)任編輯:sherry
【導(dǎo)讀】在模擬和數(shù)字電路之間實現(xiàn)無線和有線的互連使得電路設(shè)計越加復(fù)雜,需要系統(tǒng)工程師使用多個電源軌和混合電路設(shè)計。具有模擬和數(shù)字信號的電路一般傾向于設(shè)置幾個接地參考,這樣經(jīng)常導(dǎo)致電路雜亂無章,設(shè)計目的無法實現(xiàn),表面上看上去很可靠的方案卻最終成為故障之源。那么有好的方法嗎?
隨著電子產(chǎn)品尺寸變得越來越緊湊、功能越來越強(qiáng)大、用途更加廣泛,最終的系統(tǒng)級要求,以及移動和固定設(shè)備的復(fù)雜性也變得日益突出。這種復(fù)雜性來源于要求在模擬和數(shù)字電路之間實現(xiàn)無線和有線的互連,需要系統(tǒng)工程師使用多個電源軌和混合電路設(shè)計。具有模擬和數(shù)字信號的電路一般傾向于設(shè)置幾個接地參考,這樣經(jīng)常導(dǎo)致電路雜亂無章,設(shè)計目的無法實現(xiàn),表面上看上去很可靠的方案卻最終成為故障之源。
為了打牢復(fù)雜電路系統(tǒng)堅實的工程化基礎(chǔ),必須要使電源和接地解決方案主動地去按照工程化要求實施來優(yōu)化性能和散熱問題,同時減少EMI輻射和信號的噪聲干擾。本文將從功率傳輸?shù)慕嵌葋黻U述如何優(yōu)化復(fù)雜電路,以便能夠改善信號完整性,使各個功能模塊正確接地來實現(xiàn)最終的系統(tǒng)設(shè)計。這里將重點放在理解電路的需求和預(yù)先規(guī)劃最終的系統(tǒng),因為這兩個步驟的結(jié)果是有效地把圖紙轉(zhuǎn)變?yōu)樽罱K的印刷電路板。在設(shè)計階段花一些時間從電流路徑和噪聲敏感性的角度來考慮一個復(fù)雜系統(tǒng)的每個功能模塊,然后根據(jù)電流總是在一個循環(huán)回路中流動的簡單公理來設(shè)置這些模塊及供電電路,這樣當(dāng)今系統(tǒng)工程師所面對的復(fù)雜電路就可以分解為許多可管理的部分,以便實現(xiàn)最終的可靠設(shè)計。
簡單電路的電源和接地分析
為了證明該理論,讓我們來看一個簡單的電路并考慮所示的連接。該基本電路包括三個要素,一個低壓差(LDO)線性調(diào)節(jié)器,一個微處理USB數(shù)據(jù)線接到音頻驅(qū)動器,和一個揚(yáng)聲器,所有這些都由一個連接到某個計算主機(jī)的USB插頭供電。在本例中,USB到音頻驅(qū)動器必須用3.3V供電。由于揚(yáng)聲器采用音頻驅(qū)動器的輸出供電,所以音頻輸入驅(qū)動器需要+3.3V LDO,其由USB連接器供電(+5V),這似乎可以得到一個顯而易見的結(jié)論,即可將它們放置在圖1(a)原理圖所示的位置。
但是,在這種框架下,驅(qū)動揚(yáng)聲器工作的電流在返回到電流源驅(qū)動器時會產(chǎn)生一個電壓反彈,該電壓反彈會反過來作用于LDO并最終影響到USB連接器。在本例中,把USB數(shù)據(jù)轉(zhuǎn)換為音樂的基準(zhǔn)電壓會以音樂播放的速率反彈。由于揚(yáng)聲器電感所產(chǎn)生的相移會增大誤差,這將和由于電流提升產(chǎn)生的高音量混合在一起。電壓反彈也將導(dǎo)致紋波出現(xiàn),這將降低揚(yáng)聲器發(fā)出的音質(zhì)。
有兩種方法可盡量減少紋波電流的影響。一是通過在非常接近USB到音頻IC處增加一個電容(C1),使其接在VLDO節(jié)點到GND引腳之間,這樣一來該電容器被置于這些節(jié)點的中心位置。減少紋波應(yīng)該針對所感興趣的頻率,在本例中的情況下,為可聽范圍<20kHz??梢酝ㄟ^電容電流等式(1)來選取電容值以便盡量降低LDO的紋波電流,直至干擾完全去除。
這將減少到達(dá)DC的紋波,之后電流只引起電壓降,并且不會隨時間而變化很多(上面等式中的Δt應(yīng)該被視為可聽頻率12~14kHz的平均值)。通過在各IC之間使用較寬的電源和GND連接來限制由歐姆定律所得到的電壓降值(電流與電阻的乘積),可控制誤差的大小。
圖1:一個簡單的電路表明電源電路會引起反彈,而且會返回電源。
GND和電源線的寬度應(yīng)當(dāng)根據(jù)可接受的損耗來確定。對于典型的1盎司銅印刷電路板,其電阻可以估算大約為每平方0.5mΩ。由于此問題不能總是通過添加電容去緩解,而應(yīng)該采用Figure 1(b)中的方案來從根本上解決。LDO是放在音頻驅(qū)動IC的上方,可以使立體聲電流回路避免了敏感的音頻驅(qū)動GND,這樣產(chǎn)生的GND電壓反彈不會影響音頻驅(qū)動,只有小的紋波干擾出現(xiàn)。
[page]
復(fù)雜電路的電源和接地優(yōu)化策略
在上面的應(yīng)用案例中,只有兩個電流回路?,F(xiàn)在,我們換一個更復(fù)雜的例子。下面考慮的是一個較為復(fù)雜的平板電腦系統(tǒng)。在本例中,平板電腦包括背光、觸屏、攝像頭、充電系統(tǒng)(USB和無線)、藍(lán)牙、WiFi、音頻輸出(揚(yáng)聲器,耳機(jī))、以及用于存儲數(shù)據(jù)的存儲器。當(dāng)然,這些應(yīng)用的大部分都需要不同電壓的電源軌以便更好地工作。
如圖2所示,該系統(tǒng)具有五個電源軌和兩種給電池充電的方法,這意味著至少會有五個電流回路。但相比直流電源,以及相關(guān)的各條電流路徑,實際應(yīng)用中有更多需要考慮的方面。電路中有多個開關(guān)穩(wěn)壓器,廣播和接收天線系統(tǒng),所有這些都需要使用微處理器來協(xié)調(diào)和控制。展示的與電源和它們供電的模塊相關(guān)聯(lián)的電源路徑和GND路徑,有助于將電源和負(fù)載電流評估進(jìn)行匯總,從而實現(xiàn)以下目的:
1.考慮元件的額定功率和公差
2.確定連接寬度
3.確定對電壓降、噪聲引入或產(chǎn)生的敏感度
4.限制電流環(huán)路面積以減少EMI輻射
在圖2中,主電源軌已被顏色編碼,流經(jīng)相應(yīng)GND符號處的電流已被匹配到提供電流的電源軌。例如,每一個與電池充電不相關(guān)的部件(紅色),有一個端電流返回到電池,但USB到音頻IC由3.3V BUCK調(diào)節(jié)器供電,而它是由5V Boost調(diào)節(jié)器供電的,之后接到電池。因此,GND電流從音頻IC按先后順序返回到各調(diào)節(jié)器,然后到達(dá)電池,音頻IC電流不會直接返回到電池。
圖2:典型的移動平板電腦示意圖模塊。
圖2所示的系統(tǒng)采用了一個鋰離子電池,通過USB充電器或無線功率發(fā)射器和接收器可以進(jìn)行充電。電池電壓可被升壓到+ 5V(用于相機(jī)變焦馬達(dá)、針對微處理器的+3.3V降壓調(diào)節(jié)器、音頻和觸摸屏),可降壓到+ 1.2V(用于微處理器、存儲器、藍(lán)牙和WiFi),也可升壓到+ 7V用于相機(jī)閃光燈。顯然,電壓調(diào)節(jié)器應(yīng)放在各自的負(fù)載附近,但最終由于產(chǎn)品形狀尺寸的限制,通常迫使設(shè)計者把負(fù)載放在距離電源較遠(yuǎn)的位置,或在電路板周圍混雜放置。可以看出,每個電源需要支持多個負(fù)載,因此必須采用精心策劃的布線和布局方案來控制電流路徑和無意產(chǎn)生的EMI。這里是一些重要的布局考慮因素:i)可用的空間,ⅱ)機(jī)械方面的約束,ⅲ)電源和GND軌可接受的電壓降(負(fù)載電流和跡線/平面正方形數(shù)目的乘積),ⅳ)電源和GND電流路徑,以及v)成本(PCB層數(shù),組件),ⅵ)數(shù)字或模擬信號的頻率,以及從電源直接返回路徑的可行性。
[page]
作為最后一個案例,這里介紹一個假設(shè)的具有機(jī)械約束的最終系統(tǒng)。在這樣的系統(tǒng)中,用戶界面和整體尺寸會給設(shè)計帶來一些限制。圖3示出了每一個模塊的實際位置:
圖3:典型的移動平板電腦應(yīng)用模塊和布局。
圖3中的每個電源都被顏色編碼以便區(qū)分,圖中最重要的部分是彩色標(biāo)識的GND返回電流。因為多個電源是串聯(lián)的,導(dǎo)致每個最終負(fù)載和GND電流被迫以它們被加電時相同的順序去完成返回路徑。例如,電池為BUCK1.2V調(diào)節(jié)器加電,該調(diào)節(jié)器為微處理器供電。因此,流經(jīng)微處理器的電流在返回到電池之前,將直接返回到BUCK1.2V調(diào)節(jié)器器GND端。如果未能預(yù)見到全部的電流回路和電流路徑完成的次序,就可能導(dǎo)致電路運行不穩(wěn)定,或者沒有足夠的GND電流返回,原因是這些問題沒有在電路布局中適當(dāng)?shù)乜紤]到并加以控制。
例如,可以很容易地想到系統(tǒng)工程師會把藍(lán)牙和WiFi天線放置在相機(jī)和閃光燈的位置。由照相機(jī)與無線/藍(lán)牙模塊的位置顛倒產(chǎn)生的問題是,即使+ 1.2V電源仍然可正常地把電力分開來提供給那些需要的模塊,高頻藍(lán)牙和WiFi的GND返回電流會直接流過微處理器/存儲器模塊的下方,由此可把與天線相關(guān)的紋波電流和電壓反彈直接引入到高頻微處理器GND和存儲器存取。這將導(dǎo)致電池溫度的模-數(shù)轉(zhuǎn)換錯誤,可能會破壞揚(yáng)聲器的立體聲音質(zhì),影響相機(jī)的分辨率,并導(dǎo)致存儲器錯誤,以至于數(shù)據(jù)丟失。通過比較,如圖中所畫部分所示,從BUCK1.2V調(diào)節(jié)器到每個獨立的負(fù)載和返回電源路徑(在這種情況下為BUCK1.2V),WiFi /藍(lán)牙電源和GND電流將保持獨立并且采取并聯(lián)方式,避免了所有上述問題。
值得注意的是,上述所列出的各例中都假設(shè)采用一個單一的GND,并且被畫在一個銅平面上,該平面在一個PCB層中為連續(xù)和不間斷的。此接地平面由電路中所有的模塊共享,而不是隔分GND平面,或把它分離為多個子部分,之后使用組件來連接GND平面及控制電流路徑。特意的模塊布局已經(jīng)開始得到實施,因為這種方法使用自然的電流流動可以使電路屏蔽免受不需要的GND反彈影響。任何承載電流或電壓(正電位)的線路必須要有一個返回路徑,而返回路徑應(yīng)盡可能地接近正電位形式的信號,并且會被分配到源信號/電源軌下方的GND平面上。
在理解了電流的流動和最小化電流環(huán)路的概念后可以得到一個明顯的結(jié)論,單點接地方法是PCB設(shè)計的理想和首選方法,因為它顯著減少了元件數(shù)量,電路板層數(shù)和潛在的輻射:每段線路和模塊應(yīng)該在PCB板上具有盡可能短的返回路徑。按照此指導(dǎo)原則,系統(tǒng)設(shè)計人員只需要從正確的走線寬度、組件和模塊的智能布局等角度來控制PCB設(shè)計。他沒有必要去檢查每一段線路,或搭建多個實驗板以獲得正確的電源、信號和GND方案。單一、不間斷的GND平面層帶來的另外一個優(yōu)點是該平面的連續(xù)性允許產(chǎn)生的熱量均勻地散布在整個PCB表面,從而實現(xiàn)較低的工作溫度。
結(jié)論
用于驅(qū)動任何電路的任何信號(或電源),必須有適當(dāng)?shù)穆窂椒祷氐皆搭^。電路設(shè)計人員必須考慮源和接地方案以正確地實現(xiàn)最終的系統(tǒng)方案。在實施階段考慮負(fù)載和負(fù)載類型是至關(guān)重要的,這樣可以使那些引起電壓反彈的電流路徑得到控制。在GND噪聲不影響PCB性能的區(qū)域,布局和定位那些電流通路是實現(xiàn)有效和高效電路設(shè)計的關(guān)鍵。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機(jī)運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 邁向更綠色的未來:GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
- 精準(zhǔn)監(jiān)測電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號
電路圖知識
電腦OA
電腦電源
電腦自動斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器