加了濾波電路,結(jié)果電源紋波還變大了!
發(fā)布時間:2017-07-17 責任編輯:wenwei
【導(dǎo)讀】在電路中,在IC的電源引腳處經(jīng)常會使用磁珠與板卡上面的其他電源隔離,還能達到抑制高頻噪聲,減小電源紋波的目的;但有的電路里面的器件電源串接磁珠反而會增加電源紋波,即出現(xiàn)電源后端的噪聲明顯要大于磁珠前段的噪聲。
現(xiàn)象:在電路中,在IC的電源引腳處經(jīng)常會使用磁珠與板卡上面的其他電源隔離,還能達到抑制高頻噪聲,減小電源紋波的目的;但有的電路里面的器件電源串接磁珠反而會增加電源紋波,即出現(xiàn)電源后端的噪聲明顯要大于磁珠前段的噪聲。
理想模型分析:
在高頻段,阻抗由電阻成分構(gòu)成,隨著頻率升高,磁芯的磁導(dǎo)率降低,導(dǎo)致電感的電感量減小,感抗成分減小 但是,這時磁芯的損耗增加,電阻成分增加,導(dǎo)致總的阻抗增加,當高頻信號通過鐵氧體時,電磁干擾被吸收并轉(zhuǎn)換成熱能的形式耗散掉。
一般磁珠的參數(shù)會標稱高頻的電阻值,但往往大家只關(guān)注這個參數(shù),而忽略其低頻的電感值。
所以,這個電路中,我們理想的模型是一個RC濾波電路:
我們希望我們的濾波電路,能夠把高頻部分濾掉。
假設(shè)我們有一個標稱100歐姆的磁珠,就表示這個磁珠在100MHz時的電阻為100歐,在直流時為0歐,所以可以建立以下是用于快速理解的磁珠模型。
可見,在直流時,L將R短路,因此磁珠就表現(xiàn)為0歐。
而當高頻的噪聲通過時,L近似為無窮大,因此磁珠就表現(xiàn)為一個100歐的電阻。
但是從實際測試的效果來看,并不是如我們所愿。
實際模型分析:
鐵氧體可以等效為一個電感與電阻并聯(lián),在低頻與高頻時分別呈現(xiàn)不同的特性。
磁珠在低頻段,阻抗由電感的感抗構(gòu)成,低頻時R很小,磁芯的磁導(dǎo)率較高,因此電感量較大,L起主要作用,電磁干擾被反射而受到抑制,并且這時磁芯的損耗較小,整個器件是一個低損耗、高Q特性的電感,這種電感容易造成諧振因此在低頻段,有時可能出現(xiàn)使用鐵氧體磁珠后干擾增強的現(xiàn)象。
如果我們的負載又比較小的時候,整個電路就是一個LC電路。下圖為磁珠的阻抗曲線。
如果我們選擇的電容,和磁珠正好是以下這種情況。并且開關(guān)電源的開關(guān)頻率又在諧振頻率附近。那么就出現(xiàn)了“諧振”,也就是輸入信號,在這個頻點被放大。
那么我們就需要把這個諧振點降低頻率,遠離開關(guān)頻率。讓電源紋波在這個濾波電路的衰減區(qū)。這就需要增加電容的容值。
有的朋友經(jīng)過計算,覺得自己的電路諧振點應(yīng)該是小于開關(guān)頻率的,但是實際測試,還是比預(yù)想的頻率要大。這是為什么呢?
直流電壓值變大了,電容值變?。蛪悍秶詢?nèi))
在給出的多種電容類型中,最常用的是X5R、X7R。所有的型號在環(huán)境條件變化時都會出現(xiàn)電容值變化。尤其Y5V在整個環(huán)境條件區(qū)間內(nèi),會表現(xiàn)出極大的電容量變化。
當電容公司開發(fā)產(chǎn)品時,他們會通過選擇材料的特性,使電容能夠在規(guī)定的溫度區(qū)間(第一個和第二個字母),工作在確定的變化范圍內(nèi)(第三個字母)。我正在使用的是X7R電容,它在-55°C到+125°C之間的變化不超過±15%。
當我們在電容兩端加上電壓時,我們發(fā)現(xiàn)電壓就會導(dǎo)致電容值的變化(在耐壓范圍以內(nèi))。電容隨著設(shè)置條件的變化量是如此之大。我選擇的是一只工作在12V偏壓下的耐壓16V電容。數(shù)據(jù)表顯示,4.7-μF電容在這些條件下通常只提供1.5μF的容量。
我們可以看到,不同的型號,不同的耐壓,不同的封裝的電容,隨著電壓上升的下降趨勢。
對于某個給定的封裝尺寸和瓷片電容類型,電容的額定電壓似乎一般沒有影響。
這里除了考慮直流電壓,還需要考慮交流電壓、溫度等陶瓷電容的特性。
(來源:硬件十萬個為什么)
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 邁向更綠色的未來:GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴大了汽車雷達的覆蓋范圍
- 精準監(jiān)測電離分數(shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護
電路圖
電路圖符號
電路圖知識
電腦OA
電腦電源
電腦自動斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器