你的位置:首頁 > 電路保護(hù) > 正文

如何在對電橋傳感器進(jìn)行電路設(shè)計(jì)時(shí)避免陷入困境

發(fā)布時(shí)間:2018-07-04 責(zé)任編輯:lina

【導(dǎo)讀】儀表放大器可以調(diào)理傳感器生成的電信號,從而實(shí)現(xiàn)這些信號的數(shù)字化、存儲或?qū)⑵溆糜诳刂菩盘栆话爿^小,因此,放大器可能需要配置為高增益。另外,信號可能會疊加大共模電壓,也可能疊加較大直流失調(diào)電壓。精密儀表放大器可以提供高增益,選擇性地放大兩個(gè)輸入電壓之間的差異,同時(shí)抑制兩個(gè)輸入中共有的信號。

惠斯登電橋是這種情況的經(jīng)典例子,但像生物傳感器一類的原電池具有類似的特性。電橋輸出信號為差分信號,因此,儀表放大器是高精度測量的首選。理想情況下,無負(fù)載電橋輸出為零,但僅當(dāng)所有四個(gè)電阻均完全相同時(shí),這種情況方為真。假如有一個(gè)以分立式電阻構(gòu)建的電橋,如圖 1 所示。最差情況差分失調(diào) VOS 為:
 
 
其中,VEX 為電橋激勵(lì)電壓,TOL 為電阻容差(單位為百分比)。
 
圖 1 惠斯登電橋失調(diào)
 
例如,在各元件的容差均為 0.1%且激勵(lì)電壓為 5 V 時(shí),差分失調(diào)可以高達(dá)±5 mV。如果需要 400 的增益來實(shí)現(xiàn)所需電橋靈敏度,則放大器輸出端的失調(diào)變成±2 V。假設(shè)放大器由同一電源驅(qū)動,并且其輸出可以軌到軌擺動,則僅電橋失調(diào)就可能消耗掉 80%以上的輸出擺幅。在行業(yè)要求電源電壓越來越小的趨勢下,這個(gè)問題只會變得更加糟糕。
 
傳統(tǒng)的三運(yùn)放儀表放大器架構(gòu)(如圖 2 所示)有一個(gè)差分增益級,其后為一個(gè)減法器,用于移除共模電壓。增益施加于第一級,因此,失調(diào)放大的倍數(shù)與目標(biāo)信號相同。因此,將其移除的唯一方法是在參考(REF)端施加反電壓。這種方法的主要不足在于,如果放大器的第一級已經(jīng)飽和,則調(diào)節(jié) REF 上的電壓并不能更正失調(diào)??朔@點(diǎn)不足的幾種方法包括:
 
* 根據(jù)具體情況,以外部電阻對電橋分流,但對于自動化生產(chǎn)來說,這是不現(xiàn)實(shí)的,而且在出廠后是無法調(diào)整的
* 減少第一級增益,通過微調(diào) REF 上的電壓來移除失調(diào),并再添一個(gè)放大器電路以實(shí)現(xiàn)所需增益
* 減少第一級增益,以高分辨率 ADC 完成數(shù)字化輸出,并在軟件中移除失調(diào)
 
后兩種選項(xiàng)還需要考慮最差情況下與原始失調(diào)值的偏差,從而進(jìn)一步減少第一級的最大增益。這些解決方案并不理想,因?yàn)樗鼈冃枰~外的電源、電路板空間或成本,來達(dá)到高 CMRR和低噪聲的目標(biāo)。另外,交流耦合并不是測量直流或超慢移動信號的一種選擇。
 
圖2 三運(yùn)放儀表放大器拓?fù)浣Y(jié)構(gòu)
 
間接電流反饋(ICF)儀表放大器(如AD8237和AD8420)可在放大之前移除失調(diào)。圖 3 顯示ICF拓?fù)浣Y(jié)構(gòu)原理圖。
 
圖 3 間接電流反饋儀表放大器拓?fù)浣Y(jié)構(gòu)
 
該儀表放大器的傳遞函數(shù)在形式上與經(jīng)典三運(yùn)放拓?fù)浣Y(jié)構(gòu)的傳遞函數(shù)相同,其計(jì)算公式為
 

 
由于輸入之間的電壓等于反饋(FB)與參考(REF)端子之間的電壓時(shí),放大器的反饋要求可得到滿足,因此,我們可將該公式重寫為
 
 
這意味著,引入一個(gè)等于反饋和參考端子之間失調(diào)的電壓,即使在存在大輸入失調(diào)的情況下,也可將輸出調(diào)整為零伏特。如圖 4 所示,該調(diào)整可以通過以下方法實(shí)現(xiàn):從一個(gè)簡單的電壓源(如低成本DAC)或者來自嵌入式微控制器的濾波 PWM 信號,通過電阻 RA 將一個(gè)小電流注入反饋節(jié)點(diǎn)。
 
圖4 帶失調(diào)移除功能的高增益電橋電路

設(shè)計(jì)步驟
 
據(jù)等式(3),R1 與 R2 之比將增益設(shè)為:
 
 
設(shè)計(jì)師必須確定電阻值。較大電阻值可降低功耗和輸出負(fù)載;較小值可限制 FB 輸入偏置電流和輸入阻抗誤差。如果 R1和 R2的并聯(lián)組合大于約 30 k?,則電阻開始引起噪聲。表 1 顯示了一些建議值。
 
表 1 各種增益的推薦電阻(1%電阻)
 
 
為了簡化 RA 值的查找過程,假設(shè)采用雙電源運(yùn)行模式,有一個(gè)接地 REF 端子和一個(gè)已知的雙極性調(diào)整電壓 VA。這種情況下的輸出電壓可通過以下公式計(jì)算:
 

 
注意,從 VA至輸出的增益為反相。VA的增加會使輸出電壓降低,比值為 R2和 RA之比。此比值下,可以針對給定的輸入失調(diào),使調(diào)整范圍達(dá)到最大。由于調(diào)整范圍指向增益之前的放大器輸入,因此,即使在低分辨率源的情況下,也可實(shí)施微調(diào)。由于 RA 一般都比 R1大得多,因此,我們可以得到等式(5)的近似值:

 
為了找到一個(gè) RA值以允許最大失調(diào)調(diào)整范圍 VIN(MAX),在給定調(diào)整電壓范圍 VA(MAX)的情況下,使 VOUT = 0,求 RA,結(jié)果得到
 

 
其中,VIN(MAX)為傳感器預(yù)期的最大失調(diào)。等式(5)同時(shí)顯示,調(diào)整電路的插入會修改從輸入到輸出的增益。即使如此,其影響一般也很小,增益可以重新計(jì)算為:
 

 
一般地,對于單電源電橋調(diào)理應(yīng)用,參考端的電壓應(yīng)大于信號地。如果電橋輸出可以在正負(fù)間擺動,情況尤其如此。如果基準(zhǔn)電壓源由一個(gè)低阻抗源(如分阻器和緩沖器)驅(qū)動至電壓VREF,如圖 5 所示,則等式(5)變?yōu)椋?/div>
 

 
如果相對于原始等式中的 VREF 取 VOUT 和 VA,則可得到相同的結(jié)果。VA(MAX) – VREF 也應(yīng)替換等式(7)中的 VA(MAX)。
 
設(shè)計(jì)示例
 
假設(shè)有一個(gè)單電源電橋放大器,如圖 4 所示,其中,用 3.3 V電壓來激勵(lì)電橋并驅(qū)動放大器。滿量程電橋輸出為±15 mV,失調(diào)可能處于±25-mV 的范圍。為了取得所需靈敏度,放大器增益需為 100,ADC 的輸入范圍為 0 V 至 3.3 V。由于電橋的輸出可以為正,也可以為負(fù),因此,其輸出指向中間電源或 1.65V。只需通過施加 100 的增益,失調(diào)本身即會強(qiáng)制使放大器輸出處于–0.85 V 至+4.15 V 的范圍內(nèi),這超過了電源軌。
 
這個(gè)問題可通過圖 5 所示的電路來解決。電橋放大器A1是一個(gè)像AD8237 一樣的ICF儀表放大器。放大器A2,帶R4 和R5,將A1的零電平輸出設(shè)為中間電源。AD5601 8 位DAC對輸出進(jìn)行調(diào)整,通過RA使電橋失調(diào)為 0。然后,放大器的輸出由AD7091微功耗 12 位ADC數(shù)字化。
 
圖 5 針對單電源工作模式而修改的失調(diào)移除電路
 
從表 1 可以發(fā)現(xiàn),增益為 101 時(shí),R1 和 R2 需為 1 k? 和 100 k?。電路包括一個(gè)可以在 0 V 至 3.3 V 范圍內(nèi)擺動,或者在 1.65V基準(zhǔn)電壓左右擺動±1.65 V。為了計(jì)算 RA 的值,我們使用等式(6)。其中,VA(MAX) = 1.65 V 且 VIN(MAX) = 0.025 V,RA = 65.347k?。當(dāng)電阻容差為 1%時(shí),最接近的值為 64.9 k?。然而,這沒有為源精度和溫度變化導(dǎo)致的誤差留下任何裕量,因此,我們選擇一個(gè)常見的 49.9-k? 低成本電阻。這樣做的代價(jià)是調(diào)整分辨率降低了,結(jié)果導(dǎo)致略大的調(diào)整后失調(diào)。
 
從等式(7),我們可以算出額定增益值為 103。如果設(shè)計(jì)師希望得到接近目標(biāo)值 100 的增益值,最簡單的辦法是使 R2 的值降低 3%左右,至 97.6 k?,結(jié)果對 RA 的值的影響非常小。在新的條件下,額定增益為 100.6。
 
由于 DAC 可以擺動±1.65 V,因此,總失調(diào)調(diào)整范圍可通過由 RA以及 R1和 R2的并聯(lián)組合形成的分壓器給定,其計(jì)算方法如下:
 
 
在±25-mV 最大電橋失調(diào)范圍內(nèi),±32.1-mV 的調(diào)整范圍可提供28%的額外調(diào)整裕量。對于 8 位 DAC,調(diào)整步長為:
 

對于 250-µV 調(diào)整分辨率,輸出端的最大殘余失調(diào)為 12.5 mV。
 
R3和 C1的值可以通過 ADC 數(shù)據(jù)手冊中的建議值或參考文獻(xiàn) 2來確定。對于采樣率為 1 MSPS 的 AD7091,這些值為 51 ? 和4.7 nF。在以較低速率采樣時(shí),可以使用較大的電阻或電容組合,以進(jìn)一步減少噪聲和混疊效應(yīng)。
 
該電路的另一個(gè)優(yōu)勢在于,可以在生產(chǎn)或安裝時(shí)完成電橋失調(diào)調(diào)整。如果環(huán)境條件、傳感器遲滯或長期漂移對失調(diào)值有影響,則可重新調(diào)整電路。
 
受其真軌到軌輸入影響,AD8237 最適合采用超低電源電壓的電橋應(yīng)用。對于要求較高電源電壓的傳統(tǒng)工業(yè)應(yīng)用,AD8420不失為一款良好的替代器件。該 ICF 儀表放大器采用 2.7 V 至36 V 電源供電,功耗低 60%。
 
表 2 是對兩款儀表放大器進(jìn)行了比較。都使用了最小和最大規(guī)格。有關(guān)更多詳情和最新信息,請參見產(chǎn)品數(shù)據(jù)手冊。
 
表 2 AD8237 和 AD8420 比較
 



推薦閱讀:
小巧靈活的低功耗調(diào)制解調(diào)器IC改進(jìn)HART通信網(wǎng)絡(luò)



要采購傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉