使用低功率運(yùn)算放大器進(jìn)行設(shè)計(jì),第1部分:運(yùn)算放大器電路的節(jié)能技術(shù)
發(fā)布時(shí)間:2021-02-17 來源:TI,丹尼爾·米勒 責(zé)任編輯:lina
【導(dǎo)讀】近年來,電池供電電子設(shè)備的普及使功耗成為模擬電路設(shè)計(jì)人員的首要任務(wù)。考慮到這一點(diǎn),本文是本系列的第一篇,它將介紹使用低功率運(yùn)算放大器(運(yùn)放)設(shè)計(jì)系統(tǒng)的來龍去脈。
近年來,電池供電電子設(shè)備的普及使功耗成為模擬電路設(shè)計(jì)人員的首要任務(wù)。考慮到這一點(diǎn),本文是本系列的第一篇,它將介紹使用低功率運(yùn)算放大器(運(yùn)放)設(shè)計(jì)系統(tǒng)的來龍去脈。
在第一部分中,我將討論運(yùn)算放大器電路的節(jié)能技術(shù),包括選擇具有低靜態(tài)電流(I Q)的放大器和增加反饋網(wǎng)絡(luò)的負(fù)載電阻。
了解運(yùn)算放大器電路的功耗
讓我們開始考慮一個(gè)可能需要考慮功率的示例電路:一個(gè)電池供電的傳感器,它產(chǎn)生一個(gè)模擬正弦信號(hào),振幅為50 mV,在1 kHz時(shí)的失調(diào)電壓為50 mV。信號(hào)需要調(diào)高至0 V至3 V的范圍以進(jìn)行信號(hào)調(diào)理(圖1),同時(shí)盡可能節(jié)省電池電量,這將需要具有30 V / V增益的同相放大器配置,如圖2所示。如何優(yōu)化該電路的功耗?
圖表比較電池供電的傳感器在0 v至3 v范圍內(nèi)的輸入和輸出電壓以進(jìn)行信號(hào)調(diào)理
圖1:輸入和輸出信號(hào)
同相放大器配置電路圖
圖2:傳感器放大電路
運(yùn)算放大器電路的功耗包括多種因素:靜態(tài)功率,運(yùn)算放大器輸出功率和負(fù)載功率。靜態(tài)功率P Quiescent是保持放大器開啟所需的功率,它由運(yùn)算放大器的I Q組成,該產(chǎn)品在產(chǎn)品數(shù)據(jù)表中列出。輸出功率 P Output是運(yùn)放輸出級(jí)中用于驅(qū)動(dòng)負(fù)載的功率。最后,負(fù)載功率P Load是負(fù)載本身消耗的功率。我的同事Thomas Kuehl在他的技術(shù)文章“關(guān)于運(yùn)算放大器功耗的主要問題-第1部分”和TI Precision Labs視頻“運(yùn)算放大器:功率和溫度”中定義各種公式來計(jì)算運(yùn)算放大器電路的功耗。
在這個(gè)例子中,我們有一個(gè)單電源運(yùn)算放大器,其正弦輸出信號(hào)具有直流電壓偏移。因此,我們將使用以下方程式找到總平均功率P total,avg。電源電壓由V +表示。V off是輸出信號(hào)的直流偏移,V amp是輸出信號(hào)的幅度。最后,R Load是運(yùn)算放大器的總負(fù)載電阻。注意,平均總功率與I Q直接相關(guān),而與R Load反相關(guān)。
選擇具有正確I Q的設(shè)備
公式5和6有幾個(gè)術(shù)語,最好一次考慮一個(gè)。選擇具有低I Q的放大器是降低總功耗的最直接策略。當(dāng)然,在此過程中需要權(quán)衡取舍。例如,具有較低I Q的設(shè)備通常具有較低的帶寬,較大的噪聲,并且可能更難以穩(wěn)定。本系列的后續(xù)部分將更詳細(xì)地討論這些主題。
由于運(yùn)算放大器的I Q可能變化一個(gè)數(shù)量級(jí),因此值得花時(shí)間選擇合適的放大器。如表1所示,TI為電路設(shè)計(jì)人員提供了廣泛的選擇范圍。例如,TL??V9042,OPA2333,OPA391和其他微功耗器件在節(jié)電與其他性能參數(shù)之間取得了良好的平衡。對(duì)于要求最大功率效率的應(yīng)用,TLV8802和其他納功率器件將非常適合。你可以搜索你的具體參數(shù),比如那些我的≤10μA器件Q,使用我們的參數(shù)搜索。運(yùn)算放大器的數(shù)量可能會(huì)相差一個(gè)數(shù)量級(jí),值得花些時(shí)間選擇合適的放大器。如表1所示,TI為電路設(shè)計(jì)人員提供了廣泛的選擇范圍。例如,TLV9042,OPA2333,OPA391和其他微功率器件在節(jié)省功率和其他性能參數(shù)之間取得了良好的平衡。對(duì)于要求最大功率效率的應(yīng)用,TLV8802
表1:著名的低功耗設(shè)備
降低負(fù)載網(wǎng)絡(luò)的阻力
現(xiàn)在考慮方程式5和6中的其余項(xiàng)。V amp項(xiàng)對(duì)P total,avg和V off的抵消不受影響,通常由應(yīng)用程序預(yù)先確定。換句話說,您通常不能使用V off來降低功耗。同樣,V +軌電壓通常由電路中可用的電源電壓設(shè)置??雌饋?,術(shù)語R Load也由應(yīng)用程序預(yù)先確定。然而,該術(shù)語包括任何組件,其載荷的輸出,而不僅僅是負(fù)載電阻,R大號(hào)。在圖1所示的電路中,R負(fù)載將包括R L以及反饋分量R 1和R 2。因此, R負(fù)載將由公式7和8定義。
通過增加反饋電阻的阻值,可以降低放大器的輸出功率。當(dāng)P輸出支配P Quiescent但有其局限性時(shí),此技術(shù)特別有效。如果反饋電阻變得遠(yuǎn)遠(yuǎn)大于R L,則R L將主導(dǎo)R Load,從而功耗將不再減小。大型反饋電阻器還可能與放大器的輸入電容相互作用,從而使電路不穩(wěn)定并產(chǎn)生大量噪聲。
為了使這些元件的噪聲影響最小,最好將運(yùn)算放大器的每個(gè)輸入端(參見圖3)上看到的等效電阻的熱噪聲與放大器的電壓噪聲頻譜密度進(jìn)行比較。經(jīng)驗(yàn)法則是,確保放大器的輸入電壓噪聲密度指標(biāo)至少比從每個(gè)放大器的輸入端觀察到的等效電阻的電壓噪聲大三倍。
各種溫度下電阻器熱噪聲的圖表
圖3:電阻熱噪聲
真實(shí)示例
使用這些低功耗設(shè)計(jì)技術(shù),讓我們回到最初的問題:由電池供電的傳感器在1 kHz時(shí)產(chǎn)生0至100 mV的模擬信號(hào)需要30 V / V的信號(hào)放大率。圖4比較了兩種設(shè)計(jì)。左側(cè)的設(shè)計(jì)使用典型的3.3V電源,不考慮省電尺寸的電阻器和TLV9002通用運(yùn)算放大器。右邊的設(shè)計(jì)使用較大的電阻值和較低功率的TLV9042運(yùn)算放大器。請(qǐng)注意,TLV9042處的等效電阻的噪聲頻譜密度約為9.667kΩ使用這些低功耗設(shè)計(jì)技術(shù),讓我們回到最初的問題:由電池供電的傳感器在1 kHz時(shí)產(chǎn)生0至100 mV的模擬信號(hào)需要30 V / V的信號(hào)放大率。圖4比較了兩種設(shè)計(jì)。左側(cè)的設(shè)計(jì)使用典型的3.3V電源,不考慮省電尺寸的電阻器和TLV9002通用運(yùn)算放大器。右邊的設(shè)計(jì)使用較大的電阻值和較低功率的TLV9042運(yùn)算放大器。請(qǐng)注意,TLV9042的反相輸入端的等效電阻的噪聲頻譜密度約為9.667kΩ,比放大器的寬帶噪聲小三倍以上,以確保運(yùn)算放大器的噪聲能控制由放大器產(chǎn)生的任何噪聲。電阻器。
原理圖電路顯示了典型運(yùn)算放大器設(shè)計(jì)與低功耗運(yùn)算放大器設(shè)計(jì)之間的比較
圖4:典型設(shè)計(jì)與注重功耗的設(shè)計(jì)
使用圖4中的值,設(shè)計(jì)規(guī)格和適用的放大器規(guī)格,可以對(duì)公式6進(jìn)行求解,以得出TLV9002設(shè)計(jì)和TLV9042設(shè)計(jì)的P total,avg。為了便于閱讀,此處將公式6復(fù)制為公式9。公式10和11分別顯示了TLV9002設(shè)計(jì)和TLV9042設(shè)計(jì)的P total,avg的數(shù)值。公式12和13顯示了結(jié)果。用于TLV9002設(shè)計(jì)和TLV9042用于TLV9002設(shè)計(jì)和TLV9042
從最后兩個(gè)方程式可以看出,TLV9002設(shè)計(jì)消耗的功率是TLV9042的四倍以上從后兩個(gè)方程式可以看出,TLV9002設(shè)計(jì)消耗的功率是TLV9042設(shè)計(jì)的四倍以上。這是放大器I更高的結(jié)果Q,在方程10和11的左側(cè)術(shù)語表明,隨著較小的反饋電阻,如在等式10和11的右側(cè)中的術(shù)語的情況下更我占Q和更小的不需要反饋電阻,實(shí)施此處描述的技術(shù)可以節(jié)省大量功率。
結(jié)論
我已經(jīng)介紹了設(shè)計(jì)低功耗放大器電路的基礎(chǔ)知識(shí),包括選擇具有低I Q的器件和增加分立電阻器的值。在本系列的下一部分中,我將介紹何時(shí)可以使用具有低壓電源功能的低功率放大器。
(來源:TI,丹尼爾·米勒)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 精準(zhǔn)監(jiān)測電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器