你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

傅立葉分析和小波分析之間的關(guān)系?(通俗講解)

發(fā)布時(shí)間:2019-03-12 責(zé)任編輯:wenwei

【導(dǎo)讀】從傅里葉變換到小波變換,并不是一個(gè)完全抽象的東西,完全可以講得很形象。小波變換有著明確的物理意義,如果我們從它的提出時(shí)所面對(duì)的問(wèn)題看起,可以整理出非常清晰的思路。
 
下面我就按照傅里葉-->短時(shí)傅里葉變換-->小波變換的順序,講一下為什么會(huì)出現(xiàn)小波這個(gè)東西、小波究竟是怎樣的思路。(反正題主要求的是通俗形象,沒(méi)說(shuō)簡(jiǎn)短,希望不會(huì)太長(zhǎng)不看。。)
 
一、傅里葉變換
 
關(guān)于傅里葉變換的基本概念在此我就不再贅述了,默認(rèn)大家現(xiàn)在正處在理解了傅里葉但還沒(méi)理解小波的道路上。(在第三節(jié)小波變換的地方我會(huì)再形象地講一下傅里葉變換)
 
下面我們主要將傅里葉變換的不足。即我們知道傅里葉變化可以分析信號(hào)的頻譜,那么為什么還要提出小波變換?答案就是“對(duì)非平穩(wěn)過(guò)程,傅里葉變換有局限性”??慈缦乱粋€(gè)簡(jiǎn)單的信號(hào):
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
做完FFT(快速傅里葉變換)后,可以在頻譜上看到清晰的四條線,信號(hào)包含四個(gè)頻率成分。
 
一切沒(méi)有問(wèn)題。但是,如果是非平穩(wěn)信號(hào)呢?
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
如上圖,最上邊的是頻率始終不變的平穩(wěn)信號(hào)。而下邊兩個(gè)則是頻率隨著時(shí)間改變的非平穩(wěn)信號(hào),它們同樣包含和最上信號(hào)相同頻率的四個(gè)成分。
 
做FFT后,我們發(fā)現(xiàn)這三個(gè)時(shí)域上有巨大差異的信號(hào),頻譜卻非常一致。尤其是下邊兩個(gè)非平穩(wěn)信號(hào),我們從頻域上無(wú)法區(qū)分它們,因?yàn)樗鼈儼乃膫€(gè)頻率的信號(hào)的成分確實(shí)是一樣的,只是出現(xiàn)的先后順序不同。
 
可見(jiàn),傅里葉變換處理非平穩(wěn)信號(hào)有天生缺陷。它只能獲取一段信號(hào)總體上包含哪些頻率的成分,但是對(duì)各成分出現(xiàn)的時(shí)刻并無(wú)所知。因此時(shí)域相差很大的兩個(gè)信號(hào),可能頻譜圖一樣。
 
然而平穩(wěn)信號(hào)大多是人為制造出來(lái)的,自然界的大量信號(hào)幾乎都是非平穩(wěn)的,所以在比如生物醫(yī)學(xué)信號(hào)分析等領(lǐng)域的papers中,基本看不到單純傅里葉變換這樣naive的方法。
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
上圖所示的是一個(gè)正常人的事件相關(guān)電位。對(duì)于這樣的非平穩(wěn)信號(hào),只知道包含哪些頻率成分是不夠的,我們還想知道各個(gè)成分出現(xiàn)的時(shí)間。知道信號(hào)頻率隨時(shí)間變化的情況,各個(gè)時(shí)刻的瞬時(shí)頻率及其幅值——這也就是時(shí)頻分析。
 
二、短時(shí)傅里葉變換(Short-time Fourier Transform, STFT)
 
一個(gè)簡(jiǎn)單可行的方法就是——加窗。我又要套用方沁園同學(xué)的描述了,“把整個(gè)時(shí)域過(guò)程分解成無(wú)數(shù)個(gè)等長(zhǎng)的小過(guò)程,每個(gè)小過(guò)程近似平穩(wěn),再傅里葉變換,就知道在哪個(gè)時(shí)間點(diǎn)上出現(xiàn)了什么頻率了。”這就是短時(shí)傅里葉變換。
看圖:
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
時(shí)域上分成一段一段做FFT,不就知道頻率成分隨著時(shí)間的變化情況了嗎!
 
用這樣的方法,可以得到一個(gè)信號(hào)的時(shí)頻圖了:
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
——此圖像來(lái)源于“THE WAVELET TUTORIAL”
 
圖上既能看到300Hz, 200 Hz, 100 Hz, 50 Hz四個(gè)頻域成分,還能看到出現(xiàn)的時(shí)間。兩排峰是對(duì)稱(chēng)的,所以大家只用看一排就行了。
 
是不是棒棒的?時(shí)頻分析結(jié)果到手。但是STFT依然有缺陷。
 
使用STFT存在一個(gè)問(wèn)題,我們應(yīng)該用多寬的窗函數(shù)?
 
窗太寬太窄都有問(wèn)題:
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
窗太窄,窗內(nèi)的信號(hào)太短,會(huì)導(dǎo)致頻率分析不夠精準(zhǔn),頻率分辨率差。窗太寬,時(shí)域上又不夠精細(xì),時(shí)間分辨率低。
 
(這里插一句,這個(gè)道理可以用海森堡不確定性原理來(lái)解釋。類(lèi)似于我們不能同時(shí)獲取一個(gè)粒子的動(dòng)量和位置,我們也不能同時(shí)獲取信號(hào)絕對(duì)精準(zhǔn)的時(shí)刻和頻率。這也是一對(duì)不可兼得的矛盾體。我們不知道在某個(gè)瞬間哪個(gè)頻率分量存在,我們知道的只能是在一個(gè)時(shí)間段內(nèi)某個(gè)頻帶的分量存在。 所以絕對(duì)意義的瞬時(shí)頻率是不存在的。)
 
看看實(shí)例效果吧:
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
——此圖像來(lái)源于“THE WAVELET TUTORIAL”
 
上圖對(duì)同一個(gè)信號(hào)(4個(gè)頻率成分)采用不同寬度的窗做STFT,結(jié)果如右圖。用窄窗,時(shí)頻圖在時(shí)間軸上分辨率很高,幾個(gè)峰基本成矩形,而用寬窗則變成了綿延的矮山。但是頻率軸上,窄窗明顯不如下邊兩個(gè)寬窗精確。
 
所以窄窗口時(shí)間分辨率高、頻率分辨率低,寬窗口時(shí)間分辨率低、頻率分辨率高。對(duì)于時(shí)變的非穩(wěn)態(tài)信號(hào),高頻適合小窗口,低頻適合大窗口。然而STFT的窗口是固定的,在一次STFT中寬度不會(huì)變化,所以STFT還是無(wú)法滿足非穩(wěn)態(tài)信號(hào)變化的頻率的需求。
 
三、小波變換
 
那么你可能會(huì)想到,讓窗口大小變起來(lái),多做幾次STFT不就可以了嗎?!沒(méi)錯(cuò),小波變換就有著這樣的思路。
但事實(shí)上小波并不是這么做的(關(guān)于這一點(diǎn),方沁園同學(xué)的表述“小波變換就是根據(jù)算法,加不等長(zhǎng)的窗,對(duì)每一小部分進(jìn)行傅里葉變換”就不準(zhǔn)確了。小波變換并沒(méi)有采用窗的思想,更沒(méi)有做傅里葉變換。)
 
至于為什么不采用可變窗的STFT呢,我認(rèn)為是因?yàn)檫@樣做冗余會(huì)太嚴(yán)重,STFT做不到正交化,這也是它的一大缺陷。
 
于是小波變換的出發(fā)點(diǎn)和STFT還是不同的。STFT是給信號(hào)加窗,分段做FFT;而小波直接把傅里葉變換的基給換了——將無(wú)限長(zhǎng)的三角函數(shù)基換成了有限長(zhǎng)的會(huì)衰減的小波基。這樣不僅能夠獲取頻率,還可以定位到時(shí)間了~
 
【解釋】
 
來(lái)我們?cè)倩仡櫼幌赂道锶~變換吧,沒(méi)弄清傅里葉變換為什么能得到信號(hào)各個(gè)頻率成分的同學(xué)也可以再借我的圖理解一下。
傅里葉變換把無(wú)限長(zhǎng)的三角函數(shù)作為基函數(shù):
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
這個(gè)基函數(shù)會(huì)伸縮、會(huì)平移(其實(shí)是兩個(gè)正交基的分解)??s得窄,對(duì)應(yīng)高頻;伸得寬,對(duì)應(yīng)低頻。然后這個(gè)基函數(shù)不斷和信號(hào)做相乘。某一個(gè)尺度(寬窄)下乘出來(lái)的結(jié)果,就可以理解成信號(hào)所包含的當(dāng)前尺度對(duì)應(yīng)頻率成分有多少。于是,基函數(shù)會(huì)在某些尺度下,與信號(hào)相乘得到一個(gè)很大的值,因?yàn)榇藭r(shí)二者有一種重合關(guān)系。那么我們就知道信號(hào)包含多少該頻率的成分。
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
(看,這兩種尺度能乘出一個(gè)大的值,所以信號(hào)包含較多的這兩個(gè)頻率成分,在頻譜上這兩個(gè)頻率會(huì)出現(xiàn)兩個(gè)峰)
 
以上,就是粗淺意義上傅里葉變換的原理。
 
如前邊所說(shuō),小波做的改變就在于,將無(wú)限長(zhǎng)的三角函數(shù)基換成了有限長(zhǎng)的會(huì)衰減的小波基。
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
這就是為什么它叫“小波”,因?yàn)槭呛苄〉囊粋€(gè)波嘛~
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
從公式可以看出,不同于傅里葉變換,變量只有頻率ω,小波變換有兩個(gè)變量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函數(shù)的伸縮,平移量 τ控制小波函數(shù)的平移。尺度就對(duì)應(yīng)于頻率(反比),平移量 τ就對(duì)應(yīng)于時(shí)間。
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
當(dāng)伸縮、平移到這么一種重合情況時(shí),也會(huì)相乘得到一個(gè)大的值。這時(shí)候和傅里葉變換不同的是,這不僅可以知道信號(hào)有這樣頻率的成分,而且知道它在時(shí)域上存在的具體位置。
 
而當(dāng)我們?cè)诿總€(gè)尺度下都平移著和信號(hào)乘過(guò)一遍后,我們就知道信號(hào)在每個(gè)位置都包含哪些頻率成分。
 
看到了嗎?有了小波,我們從此再也不害怕非穩(wěn)定信號(hào)啦!從此可以做時(shí)頻分析啦!
 
做傅里葉變換只能得到一個(gè)頻譜,做小波變換卻可以得到一個(gè)時(shí)頻譜!
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
↑:時(shí)域信號(hào)
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
↑:傅里葉變換結(jié)果
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
——此圖像來(lái)源于“THE WAVELET TUTORIAL”
↑:小波變換結(jié)果
 
小波還有一些好處:
 
1. 我們知道對(duì)于突變信號(hào),傅里葉變換存在吉布斯效應(yīng),我們用無(wú)限長(zhǎng)的三角函數(shù)怎么也擬合不好突變信號(hào):
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
然而衰減的小波就不一樣了:
 
傅立葉分析和小波分析之間的關(guān)系?(通俗講解)
 
2. 小波可以實(shí)現(xiàn)正交化,短時(shí)傅里葉變換不能。
 
以上,就是小波的意義。
 
以上只是用形象地給大家展示了一下小波的思想,希望能對(duì)大家的入門(mén)帶來(lái)一些幫助。畢竟如果對(duì)小波一無(wú)所知,直接去看那些堆砌公式、照搬論文語(yǔ)言的教材,一定會(huì)痛苦不堪。
 
在這里推薦幾篇入門(mén)讀物,都是以感性介紹為主,易懂但并不深入,對(duì)大家初步理解小波會(huì)很有幫助。文中有的思路和圖也選自于其中:
 
1. THE WAVELET TUTORIAL 
2. WAVELETS:SEEING THE FOREST AND THE TREES
3. A Really Friendly Guide to Wavelets
4. Conceptual wavelets
 
但是真正理解透小波變換,這些還差得很遠(yuǎn)。比如你至少還要知道有一個(gè)“尺度函數(shù)”的存在,它是構(gòu)造“小波函數(shù)”的關(guān)鍵,并且是它和小波函數(shù)一起才構(gòu)成了小波多分辨率分析,理解了它才有可能利用小波做一些數(shù)字信號(hào)處理;你還要理解離散小波變換、正交小波變換、二維小波變換、小波包……這些內(nèi)容國(guó)內(nèi)教材上講得也很糟糕,大家就一點(diǎn)一點(diǎn)啃吧~有問(wèn)題歡迎私信我。水平有限,但一定幫助。
 
第一次在知乎寫(xiě)這么長(zhǎng)的回答,多數(shù)圖都是用MATLAB和PPT自己畫(huà)出來(lái)的,都是利用實(shí)驗(yàn)室搬完磚之余的時(shí)間一點(diǎn)點(diǎn)弄的,歡迎分享,如轉(zhuǎn)載還請(qǐng)跟我說(shuō)一聲哈~
 
評(píng)論中的一些問(wèn)題的回答:
 
1. 關(guān)于海森堡不確定性原理
 
不確定性原理,或者叫測(cè)不準(zhǔn)原理,最早出自量子力學(xué),意為在微觀世界,粒子的位置與動(dòng)量不可同時(shí)被確定。但是這個(gè)原理并不局限于量子力學(xué),有很多物理量都有這樣的特征,比如能量和時(shí)間、角動(dòng)量和角度。體現(xiàn)在信號(hào)領(lǐng)域就是時(shí)域和頻域。不過(guò)更準(zhǔn)確一點(diǎn)的表述應(yīng)該是:一個(gè)信號(hào)不能在時(shí)空域和頻域上同時(shí)過(guò)于集中;一個(gè)函數(shù)時(shí)域越“窄”,它經(jīng)傅里葉變換的頻域后就越“寬”。
如果有興趣深入研究一下的話,這個(gè)原理其實(shí)非常耐人尋味。信號(hào)處理中的一些新理論在根本上都和它有所相連,比如壓縮感知。如果你剝開(kāi)它復(fù)雜的數(shù)學(xué)描述,最后會(huì)發(fā)現(xiàn)它在本質(zhì)上能實(shí)現(xiàn)就源于不確定性原理。而且大家不覺(jué)得這樣一些矛盾的東西在哲學(xué)意義上也很奇妙嗎,世界觀感覺(jué)就此被改變了。。
 
2. 關(guān)于正交化
 
什么是正交化?為什么說(shuō)小波能實(shí)現(xiàn)正交化是優(yōu)勢(shì)?
 
簡(jiǎn)單說(shuō),如果采用正交基,變換域系數(shù)會(huì)沒(méi)有冗余信息,等于是用最少的數(shù)據(jù)表達(dá)最大的信息量,利于數(shù)值壓縮等領(lǐng)域。JPEG2000壓縮就是用正交小波變換。
 
比如典型的正交基:二維笛卡爾坐標(biāo)系的(1,0)、(0,1),用它們表達(dá)一個(gè)信號(hào)顯然非常高效,計(jì)算簡(jiǎn)單。而如果用三個(gè)互成120°的向量表達(dá),則會(huì)有信息冗余,有重復(fù)表達(dá)。
 
但是并不意味著正交一定優(yōu)于不正交。比如如果是做圖像增強(qiáng),有時(shí)候反而希望能有一些冗余信息,更利于對(duì)噪聲的抑制和對(duì)某些特征的增強(qiáng)。
 
3. 關(guān)于瞬時(shí)頻率
 
原問(wèn)題:圖中時(shí)刻點(diǎn)對(duì)應(yīng)一頻率值,一個(gè)時(shí)刻點(diǎn)只有一個(gè)信號(hào)值,又怎么能得到他的頻率呢?
 
很好的問(wèn)題。如文中所說(shuō),絕對(duì)意義的瞬時(shí)頻率其實(shí)是不存在的。單看一個(gè)時(shí)刻點(diǎn)的一個(gè)信號(hào)值,當(dāng)然得不到它的頻率。我們只不過(guò)是用很短的一段信號(hào)的頻率作為該時(shí)刻的頻率,所以我們得到的只是時(shí)間分辨率有限的近似分析結(jié)果。這一想法在STFT上體現(xiàn)得很明顯。小波等時(shí)頻分析方法,如用衰減的基函數(shù)去測(cè)定信號(hào)的瞬時(shí)頻率,思想也類(lèi)似。
 
4. 關(guān)于小波變換的缺點(diǎn)
 
這要看和誰(shuí)比了。
 
A.作為圖像處理方法,和多尺度幾何分析方法(超小波)比:
 
對(duì)于圖像這種二維信號(hào)的話,二維小波變換只能沿2個(gè)方向進(jìn)行,對(duì)圖像中點(diǎn)的信息表達(dá)還可以,但是對(duì)線就比較差,這時(shí)候ridgelet(脊波), curvelet(曲波)等多尺度幾何分析方法就更有優(yōu)勢(shì)了。
 
B. 作為時(shí)頻分析方法,和HHT比:
 
相比于HHT等時(shí)頻分析方法,小波依然沒(méi)脫離海森堡測(cè)不準(zhǔn)原理的束縛,某種尺度下,不能在時(shí)間和頻率上同時(shí)具有很高的精度;以及小波是非適應(yīng)性的,基函數(shù)選定了就不改了。
 
知識(shí)有限,暫時(shí)想到的有這些。
 
 
推薦閱讀:
 
電動(dòng)車(chē)主要零部件霍爾元件的作用和結(jié)構(gòu)
技術(shù)干貨:ESD應(yīng)對(duì)策略六條
高分辨率Δ-ΣADC中有關(guān)噪聲的十大問(wèn)題
開(kāi)關(guān)電源設(shè)計(jì)時(shí)這五點(diǎn)應(yīng)注意!
適用于5V和12V電壓軌的備份電源解決方案
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉