【導(dǎo)讀】信號完整性是許多設(shè)計(jì)人員在高速數(shù)字電路設(shè)計(jì)中涉及的主要主題之一。信號完整性涉及數(shù)字信號波形的質(zhì)量下降和時序誤差,因?yàn)樾盘枏陌l(fā)射器傳輸?shù)浇邮掌鲿ㄟ^封裝結(jié)構(gòu)、PCB走線、通孔、柔性電纜和連接器等互連路徑。
當(dāng)今的高速總線設(shè)計(jì)如LpDDR4x、USB 3.2 Gen1/2 (5Gbps/10Gbps)、USB3.2x2 (2x10Gbps)、PCIe和即將到來的USB4.0 (2x20Gbps) 在高頻數(shù)據(jù)從發(fā)送器流向接收器時會發(fā)生信號衰減。本文將概述高速數(shù)據(jù)速率系統(tǒng)的信號完整性基礎(chǔ)知識和集膚效應(yīng)、阻抗匹配、特性阻抗、反射等關(guān)鍵問題。
導(dǎo)讀
隨著硅節(jié)點(diǎn)采用10nm、7nm甚至5nm工藝,這可以在給定的芯片尺寸下實(shí)現(xiàn)高集成度并增加功能。在移動應(yīng)用中,趨勢是更高的頻率和更高的數(shù)據(jù)速率,并降低工作核心電壓如0.9v、0.8V、.56V甚至更低以優(yōu)化功耗。
在較低的工作電壓下以較高的頻率工作會使閾值電平或給定位數(shù)據(jù)的數(shù)據(jù)有效窗口變小,從而影響走線和電源層分配功率以及“眼圖”的閉合度。
由較高頻率和較低工作電壓引起的閉眼,增加了數(shù)據(jù)傳輸誤差的機(jī)會,因而增加了誤碼率,這就需要重新傳輸數(shù)據(jù)流。重傳會導(dǎo)致處理器在較長時間處于有源模式以重傳數(shù)據(jù)流,這會導(dǎo)致移動應(yīng)用更高的功耗并減少使用日 (DOU)。
圖1. 頻率和較低電壓對眼圖張開的影響
在給定的高頻設(shè)計(jì)中增加其他設(shè)計(jì)挑戰(zhàn)如信號衰減、反射、阻抗匹配,抖動等時,很明顯,信號損耗使接收器難以正確譯出信息,從而增加了誤差的機(jī)會。
數(shù)據(jù)流中的時鐘采樣
在接收器處,數(shù)據(jù)是在參考時鐘的邊緣處采樣的。眼圖張開越大,就越容易將采樣CLK設(shè)置在給定位的中間以采樣數(shù)據(jù)。任何幅值衰減、反射或任何抖動,都將使眼圖更閉合并使數(shù)據(jù)有效窗口和有效位時間變得更窄,從而導(dǎo)致接收端出現(xiàn)誤差。
圖2. CLK采樣
現(xiàn)在,讓我們檢查何時需要將通道或互連視為傳輸線,并查看在智能手機(jī)或平板電腦等系統(tǒng)中傳輸損耗的一些主要原因。
高頻和傳輸線
低頻設(shè)計(jì)是指波長遠(yuǎn)大于線長度且PCB走線和互連的電阻與頻率無關(guān),因此傳輸線的影響可以忽略不計(jì)。
高頻設(shè)計(jì)是指波長遠(yuǎn)小于線長度且走線的所有物理特性和互連尺寸都需要控制,以便具有一系列電氣特性的傳輸線可用于給定應(yīng)用。
我們將互連視為傳輸線的時候是在最高頻率下工作時,走線長度可能超過該頻率波長的1/10。
此時,我們需要使用集總元件對走線建模,并考慮所有頻率相關(guān)元件,包括寄生電容和電感及其對信號衰減的影響。
另一種確定在什么頻率下將互連線視為傳輸線的方法是考慮信號的上升時間 (tr)。
在大多數(shù)納米工藝節(jié)點(diǎn)中,高數(shù)據(jù)速率信號具有急劇的上升/下降時間,這要求將通道或任何互連視為傳輸線。當(dāng)這些信號通過信道傳播時,其帶寬和傳輸受給定的信號上升時間控制。
傳輸速度
電信號是電磁波,其傳輸速度取決于其周圍材料的介電常數(shù)。傳輸速度的公式是
圖3. 傳輸線上的波速
自由空間(介電常數(shù)為1)無損傳輸?shù)牟ㄋ偌s為3 x 108 m/s,不同于介電常數(shù)為4的傳輸線的波速,后者導(dǎo)致波速降低一半或1.5 x 108 m/s。
在自由空間對比在PCB傳輸?shù)牟ㄋ俨町悓?dǎo)致稱為傳播延遲 (Td) 的時間延遲,Td取決于傳播的媒介和信號必須傳播的距離。
Td(傳播延遲)=傳播距離/Vp(傳輸速度)
現(xiàn)在,當(dāng)一個信號 (CLK) 在外層傳播而另一信號 (Data) 在內(nèi)層傳播時,若我們在一側(cè)具有自由空間而在另一側(cè)具有介電常數(shù)時,情況會怎樣呢?
在許多設(shè)計(jì)中,高頻信號必須以互連電纜或撓性電纜作為傳輸路徑的一部分,這會對幅值和時序波形產(chǎn)生延遲和偏差。由于信號速度降低、串?dāng)_或介電材料吸收的任何能量而導(dǎo)致的時序偏差或任何其他損耗都會同時產(chǎn)生稱為抖動的時序和幅值偏差。
圖4. 抖動
在這里,設(shè)計(jì)人員必須匹配一系列信號之間的飛行時間。由于內(nèi)層的DATA信號將傳播得較慢,因此我們必須減小DATA信號的長度以匹配CLK信號的飛行時間。
集膚效應(yīng)
如果我們查看稱為C1的給定導(dǎo)體的一部分并通過它發(fā)送電流I(t),根據(jù)安培定律,將會產(chǎn)生與通過導(dǎo)體的電流成比例的磁通量。
如果我們僅考慮一個導(dǎo)體,附近沒有其他導(dǎo)體,那么通量線 (B1) 將在導(dǎo)體C1中沿與磁場B1相反的方向產(chǎn)生循環(huán)渦流。
圖5. 趨附效應(yīng)引起的電流重新分布
隨著頻率增加,集膚效應(yīng)將電流限制在導(dǎo)體厚度的較小部分,從而增加了有效電阻和相應(yīng)的損耗。
圖6. 由于頻率和走線路徑造成的信號損失
傳輸線和特征阻抗Zo
傳輸線上的電壓和電流一起傳播,并且是位置 (x) 和時間 (t) 的函數(shù)。傳輸線的特征阻抗 (Zo) 是與頻率相關(guān)的電阻,是傳輸?shù)碾妷翰ㄅc傳輸?shù)碾娏鞑ㄖ?/div>
圖7. 傳輸線中的電壓和電流
當(dāng)電壓V (x,t) 和電流I (x,t) 一起傳播并達(dá)到端接阻抗時,歐姆定律要求V (x,t) /I (x,t) 等于端接阻抗 (ZL)。
圖8. 匹配Zo和ZL
當(dāng)高頻信號通過PCB中的路徑,通過或改變其從一層到另一層的路徑時,阻抗將發(fā)生變化。
觀察給定的PCB,我們可以看到有很多層、走線、通孔、連接,阻抗在任何給定點(diǎn)處都在變化,且自電容、互電容、自電感和互電感會產(chǎn)生寄生效應(yīng)。
圖9. PCB層和阻抗變化
現(xiàn)在,讓我們引入一些集總元件,如寄生電感、電容、交流集膚電阻、直流電阻,它們存在于任何系統(tǒng)中。
可以看出,例如寄生電容 (Cdx) 如何改變電流分布,從而導(dǎo)致傳輸線的特征阻抗發(fā)生變化,并使Zo(傳輸電壓與傳輸電流之比)發(fā)生變化。
圖10. 含集總元件的傳輸線
隨著集膚效應(yīng)降低傳入信號的幅值,寄生電感兩端的電壓會降低負(fù)載兩端電壓的上升和下降時間,從而影響信號質(zhì)量和使信號衰減。
圖11. 寄生效應(yīng)對Zo和信號完整性的影響
電壓反射系數(shù)
當(dāng)高頻信號通過不同的路徑、通孔或改變其從一層到另一層的路徑時,阻抗將發(fā)生變化??刂七@些寄生信號并正確端接傳輸線,我們可以以最小的失真?zhèn)鬏斝盘枴?/div>
當(dāng)終端阻抗 (ZL) 不等于線路的特征阻抗 (Zo) 時,必須有一對反射電壓和電流波,并且該反射信號將覆蓋在源信號上,導(dǎo)致失真。
請注意,當(dāng)負(fù)載終端 (ZL) 等于傳輸線的特征阻抗 (Zo) 時,電壓反射系數(shù)等于零。這表明所有入射波都被匹配的負(fù)載終端吸收。
當(dāng)電壓波和電流波一起傳播并達(dá)到端接阻抗時,總?cè)肷洳由蟅/I的任何反射波必須等于端接阻抗 (ZL)。
圖12. 入射波和反射波
阻抗不匹配和反射
考慮一條50歐姆的傳輸線,端接150歐姆的端接電阻或一個過阻尼電路。為簡單起見,我們將電池的阻抗設(shè)置為0,這會將反射波強(qiáng)制返回負(fù)載。此外,設(shè)置波傳播給定長度的時間延遲(td=距離/Vp)?,F(xiàn)在,讓我們關(guān)閉開關(guān) (s) ,看看負(fù)載發(fā)生了什么。
圖13. 連續(xù)反射波序列
源和終端阻抗之間來回的連續(xù)反射波會導(dǎo)致信號覆蓋在源信號上,并在信號線上產(chǎn)生振鈴。
圖14. 反射引起的振鈴
在計(jì)算終端和源的反射系數(shù)時,我們可以得出到達(dá)終端的入射波量加上反射回源的反射波量。
圖14中具有較大電壓的過沖振鈴會給器件施加更多的輻射而使其過應(yīng)力,并在相鄰走線之間產(chǎn)生更多的串?dāng)_。
另一方面,由振鈴或瞬態(tài)響應(yīng)期間電壓軌下降引起的下沖都將增加更高的誤碼率。
帶轉(zhuǎn)接驅(qū)動器和不帶轉(zhuǎn)接驅(qū)動器的系統(tǒng)
對于某些移動應(yīng)用,如使用10Gbps數(shù)據(jù)速率的USB 3.1 Gen 2的移動應(yīng)用,總損耗預(yù)算以dB為單位,包括所有互連通道損耗。損耗預(yù)算包括從硅到連接器的路徑中的任何損耗,如硅封裝、PCB走線、通孔、柔性、共模濾波器和連接器。
為了USB Type-C Gen 2系統(tǒng)保持好的信號質(zhì)量而又不限制PCB的尺寸和設(shè)備的位置,轉(zhuǎn)接驅(qū)動器是最具性價(jià)比的方案。
考慮到像智能手機(jī)或平板電腦這樣的系統(tǒng),可以將其視為高頻數(shù)字信號從APP處理器封裝和引腳、PCB走線、通孔、連接器、柔性電纜和USB連接器傳輸而來,這些高數(shù)據(jù)速率信號可能在通過1m電纜之前就衰減。
圖15. 典型信號路徑及信號衰減
當(dāng)信號通過信道傳播時,信號的幅值會衰減,且取決于信道的長度,這種衰減可能足以導(dǎo)致在高數(shù)據(jù)速率下出現(xiàn)信號完整性問題。
轉(zhuǎn)接驅(qū)動器作為信號調(diào)節(jié)器件,可以恢復(fù)在給定通道上已有損耗的信號,它可以增強(qiáng)恢復(fù)的信號的輸出,從而允許該信號傳播更長的距離和開眼以降低誤碼率。
圖16. 使用轉(zhuǎn)接驅(qū)動器
具有可編程差分輸出電壓的轉(zhuǎn)接驅(qū)動器確保驅(qū)動強(qiáng)度與線路阻抗、走線長度保持一致,并均衡信號和解決信號完整性問題。請記住,增加驅(qū)動器的差分輸出電壓將有助于改善接收信號,但同時也會增加噪聲和抖動。
總結(jié)
保持可接受的信號完整性,需要重視集膚效應(yīng)、匹配的端接、反射、通孔、串?dāng)_、耦合及其對信號衰減的影響。
當(dāng)走線的長度約為信號波長的1/10時,任何互連都應(yīng)視為傳輸線。
影響信號完整性的因素,如信道損耗和由阻抗失配引起的信號反射,發(fā)生在數(shù)據(jù)從處理器通過PCB、通孔、柔性電纜或從PCB、通孔、柔性電纜到處理器的任何傳輸過程中。
在整個信號路徑中保持阻抗匹配對于接口至關(guān)重要,以防止反射并提供最大的功率傳輸。任何阻抗失配都會在線路上引起反射,增加抖動并可能損害信號質(zhì)量。
如果沒有轉(zhuǎn)接驅(qū)動器,將很難或幾乎不可能在數(shù)據(jù)速率>10Gbps通過系統(tǒng)電氣和協(xié)議一致性測試。在不使用轉(zhuǎn)接驅(qū)動器進(jìn)行短通道和長通道測試時,具有較高數(shù)據(jù)速率的給定信號的總傳輸通道距離可能會受到限制,并且不同設(shè)備之間的互操作性機(jī)會會降低。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動控制解決方案 驅(qū)動智能運(yùn)動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 精準(zhǔn)監(jiān)測電離分?jǐn)?shù)與沉積通量,助力PVD/IPVD工藝與涂層質(zhì)量雙重提升
- ADC 總諧波失真
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號
電路圖知識
電腦OA
電腦電源
電腦自動斷電
電能表接線
電容觸控屏
電容器
電容器單位
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器