【導(dǎo)讀】隨著智能觸控和智能表面概念在汽車應(yīng)用上的興起,純電容觸控技術(shù)被廣泛應(yīng)用于汽車內(nèi)外飾應(yīng)用中,替代傳統(tǒng)機(jī)械按鍵,在一定程度上提升了汽車人機(jī)交互體驗(yàn)感和科技感,但隨著越來(lái)越多各類人機(jī)交互應(yīng)用場(chǎng)景的出現(xiàn),以及基于傳統(tǒng)純電容方案大規(guī)模進(jìn)入汽車走向市場(chǎng),單純的電容觸控方案的弊端從開(kāi)發(fā)側(cè)到用戶側(cè)越來(lái)越顯現(xiàn)出來(lái),包括按鍵誤觸問(wèn)題,多按鍵盲操問(wèn)題,水的誤觸發(fā)問(wèn)題,EMC抗干擾問(wèn)題等等都對(duì)智能觸控和智能表面在汽車上的更大規(guī)模應(yīng)用與普及構(gòu)成了一定的障礙。行業(yè)也都在積極思考如何在可接受的成本范圍內(nèi),通過(guò)技術(shù)迭代改進(jìn)解決現(xiàn)有痛點(diǎn),提升方案的可靠性。
泰矽微所倡導(dǎo)的壓感+電容雙模3D觸控芯片及整體方案正是在這樣的大背景下應(yīng)運(yùn)而生的。整體方案構(gòu)成包括由泰矽微開(kāi)發(fā)的車規(guī)級(jí)專用人機(jī)交互MCU和來(lái)自于深圳紐迪瑞公司開(kāi)發(fā)的基于惠斯通電橋原理的車規(guī)級(jí)壓力感應(yīng)柔性傳感器。整體方案解決了現(xiàn)有純電容觸控存在的所有痛點(diǎn),且成本可控,具備較強(qiáng)的可生產(chǎn)性。方案所包含的芯片和傳感器均已通過(guò)相關(guān)AEC-Q100/200測(cè)試認(rèn)證。本文接下來(lái)的篇幅將會(huì)更詳細(xì)的展開(kāi)介紹相關(guān)方案的市場(chǎng),技術(shù)及應(yīng)用情況。
本材料面向從事汽車人機(jī)交互,智能內(nèi)外飾件相關(guān)應(yīng)用的技術(shù)及市場(chǎng)人員,汽車相關(guān)行業(yè)分析師及行業(yè)投資機(jī)構(gòu)等。希望能給行業(yè)帶來(lái)一定的參考價(jià)值。
2 市場(chǎng)縱觀和需求分析
2.1 智能按鍵和智能表面市場(chǎng)概述
隨著新能源技術(shù)的發(fā)展,汽車動(dòng)力系統(tǒng)已經(jīng)越來(lái)越難以實(shí)現(xiàn)差異化, 汽車行業(yè)的發(fā)展由過(guò)去基于機(jī)械和內(nèi)燃機(jī)系統(tǒng)的動(dòng)力系統(tǒng)的競(jìng)爭(zhēng)演變?yōu)橹悄芑孢m化,科技感等的競(jìng)爭(zhēng),隨之帶來(lái)的是整個(gè)生態(tài)系統(tǒng)的快速演變。
智能按鍵和智能表面作為汽車智能化的重要部分,目前正處于快速發(fā)展階段,隨著由儀表,娛樂(lè),空調(diào)等分離單元組成的傳統(tǒng)座艙快速向座艙域+ADAS域演變,一體貫穿屏和雙聯(lián)屏越來(lái)越多的被用于新發(fā)布車型中,傳統(tǒng)中控部分用于調(diào)節(jié)空調(diào)和娛樂(lè)導(dǎo)航等功能的機(jī)械按鍵被集成進(jìn)大顯示屏或轉(zhuǎn)換為智能按鍵被轉(zhuǎn)移到其它位置,對(duì)于集成于顯示屏的功能鍵面臨多層菜單的操作復(fù)雜度,比較適合于與駕駛和車身控制無(wú)關(guān)的娛樂(lè),導(dǎo)航,通訊等功能的集成;對(duì)于一些常用和用戶希望快捷響應(yīng)的涉及車量行駛和車身控制的功能,按鍵形式無(wú)論從便捷性和安全性考慮會(huì)更適合,但受限于可用的面積和空間,空間占用比較大的機(jī)械按鍵會(huì)轉(zhuǎn)變?yōu)楦有∏傻闹悄馨存I轉(zhuǎn)移至顯示屏下方、檔把控制板或多功能方向盤(pán)。智能按鍵除在結(jié)構(gòu)件的小體積輕量化方面有優(yōu)勢(shì)之外,也帶來(lái)用戶體驗(yàn)的提升如觸覺(jué)反饋,聲音反饋,光效反饋等, 在汽車上的應(yīng)用呈快速增加的態(tài)勢(shì)。
圖一 基于傳統(tǒng)機(jī)械按鍵的內(nèi)飾
圖二 大屏+智能按鍵
智能表面是未來(lái)汽車內(nèi)外飾發(fā)展的方向,它通過(guò)在內(nèi)外飾材料上增加電子功能的產(chǎn)品結(jié)構(gòu)實(shí)現(xiàn)塑電一體化,在我們不需要的時(shí)候隱藏,需要時(shí)通過(guò)接近,手勢(shì)或語(yǔ)音控制等形式來(lái)激活,獲得反饋和響應(yīng)。在信息展現(xiàn)上,智能表面能夠?qū)④噧?nèi)所有功能無(wú)縫整合至統(tǒng)一表面,實(shí)現(xiàn)無(wú)縫銜接。
在未來(lái),車內(nèi)的每一個(gè)表面都可以是智能表面 。我們只需在車內(nèi)覆蓋的表面上方動(dòng)動(dòng)手,某個(gè)互動(dòng)界面或動(dòng)態(tài)氛圍燈即會(huì)顯現(xiàn),這些表面可以與我們互動(dòng),可以根據(jù)用戶需求出現(xiàn)在恰當(dāng)?shù)牡胤?,其展現(xiàn)形式有很多種:
方向盤(pán)的智能表面設(shè)計(jì):可通過(guò)觸摸、按壓或手勢(shì)等方式觸發(fā)轉(zhuǎn)向信號(hào)、汽車娛樂(lè)系統(tǒng)控制、汽車檔位車速控制等功能。
門飾板和車把手:可以通過(guò)觸控技術(shù)集成后視鏡、車窗控制、座椅調(diào)節(jié)等為一體。
智能座椅控制:通過(guò)智能表面來(lái)實(shí)現(xiàn)不同的場(chǎng)景的設(shè)置,如座椅調(diào)節(jié)、座椅加熱、按摩、一鍵零重力、氛圍燈光等功能的控制。
智能玻璃和天窗的設(shè)計(jì),使用特殊的薄膜設(shè)計(jì),插入玻璃中,再通過(guò)電子控制信號(hào)改變透明度來(lái)實(shí)現(xiàn)汽車內(nèi)部氛圍燈、影像的控制功能。
圖三 無(wú)處不在的智能表面
智能表面在設(shè)計(jì)方面的自由度也將變得更為靈活。一方面,我們可以調(diào)整占用者的可見(jiàn)功能數(shù)量及其當(dāng)前需求;另一方面,也有利于設(shè)計(jì)師充分發(fā)揮想象,設(shè)計(jì)出具有更多高科技感和美感的作品,從而改善內(nèi)部視覺(jué)和觸覺(jué)效果。智能表面可以減少多余的按鈕和開(kāi)關(guān),暫時(shí)沒(méi)有被使用的功能也可以變暗或消失。而在未來(lái),幾乎任意一個(gè)表面都可以加載功能,這樣多出來(lái)的地方可以作為儲(chǔ)物空間或置放其他物品。使車內(nèi)縫隙最小化,從而實(shí)現(xiàn)了整體內(nèi)飾風(fēng)格的無(wú)縫統(tǒng)一,擴(kuò)大了空間使用率。
目前,智能表面技術(shù)正在迅速發(fā)展,未來(lái)的車輛內(nèi)部將被集視覺(jué)美與功能性于一身的大型智能表面所覆蓋。在整體的設(shè)計(jì)上,也讓消費(fèi)者覺(jué)得更具設(shè)計(jì)感和科技感。智能按鍵作為人機(jī)交互的基本實(shí)現(xiàn)形式將會(huì)是智能按鍵的基本組成部分。
除了內(nèi)飾部分的應(yīng)用,外飾件對(duì)于智能按鍵和智能表面的應(yīng)用也出現(xiàn)快速發(fā)展的態(tài)勢(shì),如隱藏式觸控門把手的應(yīng)用使車輛外觀更加美觀和節(jié)能,尾門腳踢控制器解決了用戶在雙手抱物的情況下開(kāi)尾門的難點(diǎn),智能B柱作為共享汽車的輸入截面也呈現(xiàn)出越來(lái)越多的應(yīng)用案例。
綜合以上情況, 預(yù)計(jì)智能按鍵芯片的單車用量將會(huì)達(dá)到20到30顆之多,對(duì)整車的智能化體驗(yàn)和成本越來(lái)越重要,相應(yīng)的方案的選擇顯得越來(lái)越重要。
2.2 智能按鍵和智能表面系統(tǒng)組成和方案選擇
智能按鍵人機(jī)交互主要包括感知和反饋兩部分,感知部分主要是利用各種傳感器對(duì)用戶的觸摸動(dòng)作進(jìn)行可靠識(shí)別,主要形式有電容式,電阻式,紅外式,電感式等, 反饋部分是對(duì)用戶操作進(jìn)行回饋以確認(rèn)操作成功。兩者結(jié)合可在功能和用戶習(xí)慣上完全替代傳統(tǒng)機(jī)械按鍵,同時(shí)比之機(jī)械按鍵擁有更為美觀的外形,占用更少空間,以及提升了整車的科技感。
在智能按鍵的技術(shù)選擇方面,電容觸控方案作為最通用和高性價(jià)比的方案被廣泛采用,但也存在諸多問(wèn)題, 如防水問(wèn)題,防誤觸問(wèn)題,抗電磁干擾問(wèn)題,裝配精度問(wèn)題等僅靠單一電容檢測(cè)的方式很難做到完美解決,多,模方案自然而然就成了業(yè)界共同尋求的改進(jìn)方案。其中壓力,紅外是最常使用的方案, 其中紅外檢測(cè)主要用到高成本的光電轉(zhuǎn)換器件,對(duì)裝配的精度要求高而且,信號(hào)輸出與表面的變形量也是非線性關(guān)系,靈敏度適應(yīng)環(huán)境變化的能力弱;壓力檢測(cè)的方式也有電容或電阻方式, 其中電容壓力方式要求兩個(gè)電容薄膜之間需要真空環(huán)境,支撐面需要平整,壓力和電容變化非線性等在工程實(shí)踐過(guò)程中面臨很多難以克服的挑戰(zhàn)。電阻式壓力傳感器作為新型的檢測(cè)方式具有的高線性度,裝配方式靈活,靈敏度高,低功耗等特性將成為多模觸控的優(yōu)選方案,得到越來(lái)越多業(yè)內(nèi)客戶的認(rèn)可。
3 傳統(tǒng)電容觸摸方案介紹
傳統(tǒng)的觸摸方案依照感應(yīng)方式的不同,大致可以分為電阻式,電容式,紅外線式和超聲波式四類,目前絕大部分應(yīng)用(包括汽車)采用的是是電容式觸摸。
電容式觸摸又分自容式和互容式兩種檢測(cè)方式,這兩種檢測(cè)方式應(yīng)用原理不同,應(yīng)用場(chǎng)合也不同。
圖四是自容式觸摸的原理簡(jiǎn)圖,自電容檢測(cè)是用一個(gè)電極,觸摸芯片會(huì)測(cè)試該電極和大地之間的電容,若將手指放在傳感器上,則測(cè)得的電容會(huì)增加。自電容感應(yīng)最適合用于單點(diǎn)觸摸傳感器,如按鍵。
圖四 自容觸控原理
圖五是自容式的原理簡(jiǎn)圖,互電容感應(yīng)將測(cè)量?jī)蓚€(gè)電極間的電容。其中一個(gè)電極被稱為發(fā)送電極(TX),另一個(gè)被稱為接收電極(RX)。在互電容測(cè)量系統(tǒng)中,為 TX 引腳提供數(shù)字電壓(VDDD 和 GND 間的信號(hào)切換),并測(cè)量 RX 引腳上所接收到的電荷。在 RX 電極上接收到的電荷與兩個(gè)電極間的互電容(Cx)成正比。在 TX 和 RX 電極間放置手指時(shí),互電容Cx會(huì)降低到。由于互電容降低,RX 電極上接收到的電荷也會(huì)降低?;ル娙菪?yīng)最適合用于多點(diǎn)觸摸系統(tǒng),如觸摸屏和觸控板。
圖五 互容觸控原理
圖六是自容式電容觸摸的工作原理介紹,分為觸摸態(tài)和非觸摸態(tài)。
圖六 自容工作原理
在非觸摸態(tài)的時(shí)候的物理模型如上圖所示,整個(gè)系統(tǒng)會(huì)有3個(gè)等效電容組成,一個(gè)是寄生電容Cp(Parasitic Cap),一個(gè)是電極電容Ce(Electrode Cap),還有一個(gè)回地電容Cg(Ground return Cap)。這3個(gè)電容并不是一成不變的,他們會(huì)由于周圍環(huán)境的變化而發(fā)生變化,所以在非觸摸態(tài)下,電容值會(huì)產(chǎn)生波動(dòng),我們稱之為電容底噪,需要通過(guò)軟件來(lái)對(duì)這種波動(dòng)值進(jìn)行修正,來(lái)保證不會(huì)由于周圍環(huán)境的變化而產(chǎn)生誤判斷。
圖七 基于自容的人體感應(yīng)原理
如圖七所示,當(dāng)人體靠近電容檢測(cè)電極時(shí)的物理模型如上圖所示,要比未靠近的時(shí)候會(huì)增加一個(gè)觸摸電容Ct(touch cap)。當(dāng)人體離這個(gè)電容檢測(cè)電極越近,Ct會(huì)越大,當(dāng)在一定時(shí)間范圍內(nèi)電容變化量達(dá)到一定的門限后,我們就判斷有觸摸事件發(fā)生。
雖然自容式觸摸在汽車上的應(yīng)用廣泛,但是也存在一些比較難解決的問(wèn)題,主要為以下幾種:
1:防水效果差:
像車外飾以及靠近車窗的車內(nèi)飾組件容易遇到一些水滴或者水流的情況,這種場(chǎng)景下電容觸控容易產(chǎn)生一些誤動(dòng)作。例如門把手,尾門開(kāi)關(guān),車窗升降開(kāi)關(guān),在下雨或洗車等場(chǎng)景下,容易產(chǎn)生誤判。
2:對(duì)低阻抗的物體容易產(chǎn)生誤觸:
因?yàn)殡娙萦|控的檢測(cè)原理是通過(guò)pad來(lái)檢測(cè)周圍環(huán)境的介電常數(shù)在短時(shí)間的變化量來(lái)判斷是有觸摸動(dòng)作,所以當(dāng)有低阻抗或者介電常數(shù)跟人體的介電常數(shù)相似的物體(如金屬)靠近時(shí)也容易產(chǎn)生響應(yīng)。
3:電磁抗干擾差:
由于電容觸摸采用的是共模檢測(cè)的方式,并且電容檢測(cè)電極類似于天線,所以對(duì)電源紋波和高頻噪音干擾容易產(chǎn)生誤觸,特別是EMC測(cè)試中射頻噪音和電源線以及地線上噪音的抗干擾效果不好。
4:盲操效果差:
對(duì)于用戶的一些不經(jīng)意的操作會(huì)引起誤觸發(fā),比如方向盤(pán)控制器,在駕駛者行駛過(guò)程中需要盲操的場(chǎng)景下,手對(duì)電容按鍵較多的觸摸區(qū)域操作時(shí)會(huì)有很大概率產(chǎn)生誤觸。
5:對(duì)開(kāi)發(fā)人員的技術(shù)能力要求高:
由于電容觸摸的抗干擾性差,對(duì)周圍器件的高頻干擾容易受串?dāng)_,所以結(jié)構(gòu)堆疊,Layout設(shè)計(jì)和器件擺放以及對(duì)于觸摸算法調(diào)試都存在一定的難度,開(kāi)發(fā)周期長(zhǎng)。所以在設(shè)計(jì)過(guò)程中,對(duì)結(jié)構(gòu)工程師,硬件工程師和軟件工程師的要求都非常高。
基于純電容觸控存在的諸多問(wèn)題,越來(lái)越多的人家交互觸摸方案中開(kāi)始考慮融入壓力檢測(cè)技術(shù)。通過(guò)壓力檢測(cè)判斷按壓動(dòng)作,通過(guò)常用的壓力檢測(cè)技術(shù)有電容式壓力傳感檢測(cè)、電感式壓力傳感檢測(cè)、紅外壓力傳感檢測(cè)、MEMS壓力傳感檢測(cè)、惠斯通電橋壓力傳感檢測(cè)技術(shù)。
4 主要壓感技術(shù)路線分析
4.1 電容式壓力傳感器檢測(cè)技術(shù)
電容式壓力傳感器檢測(cè)技術(shù),需要在壓力檢測(cè)位置上構(gòu)建一個(gè)電容器,按壓過(guò)程中檢測(cè)該電容器電容量的變化來(lái)判斷按壓動(dòng)作。
電容器由兩塊正對(duì)的平行導(dǎo)體,以及它們之間夾著的絕緣介質(zhì)構(gòu)成,其電容量為
其中:
ε為兩平行導(dǎo)體之間的絕緣介質(zhì)的相對(duì)介電常數(shù)
A為兩平行導(dǎo)體所覆蓋的面積
d為兩平行導(dǎo)體之間的距離
C為電容量
當(dāng)ε、A或d發(fā)生變化時(shí),電容量C也會(huì)隨之發(fā)生變化。
電容式壓力傳感器檢測(cè)技術(shù)是通過(guò)檢測(cè)按壓時(shí)改變兩平行導(dǎo)體間距來(lái)實(shí)現(xiàn)電容量變化的技術(shù)。
由此可見(jiàn),實(shí)現(xiàn)電容式壓力傳感器檢測(cè)的關(guān)鍵在于在按壓位置上構(gòu)建一個(gè)穩(wěn)定、一致,可靠,并在按壓時(shí)能夠產(chǎn)生一定行程距離的電容器。
這就使得設(shè)計(jì)電容器時(shí)需確保:
①電容器兩平行導(dǎo)體空間上既要完全重疊,又要保證兩導(dǎo)體之間的距離一致
②按壓時(shí)產(chǎn)生合適的位移行程引起的電容量的變化能被檢測(cè)電路有效檢測(cè)出來(lái)
?、鄹鞣N使用環(huán)境下絕緣介質(zhì)的相對(duì)介電常數(shù)一致。
以上條件對(duì)電容的載體結(jié)構(gòu)件、平行導(dǎo)體的生產(chǎn)裝配精度要求極其苛刻,甚至需要在兩平行導(dǎo)體之間構(gòu)建密閉環(huán)境并充填特定氣體以確保各種使用環(huán)境下電容器中的絕緣介質(zhì)的相對(duì)介電常數(shù)不變,這樣才能保證產(chǎn)品的性能和一致性,生產(chǎn)難度和生產(chǎn)成本極高。
電容量的檢測(cè)大多采用的是電容觸摸的檢測(cè)原理,因此該檢測(cè)技術(shù)除了存在構(gòu)建電容器的難度以外,還帶有電容觸摸的先天缺陷,比如防水誤觸、EMC、帶手套觸摸等問(wèn)題,降低了客戶的體驗(yàn)度。
4.2 電感式壓力傳感器檢測(cè)技術(shù)
電感式壓力傳感器檢測(cè)技術(shù)是利用電磁感應(yīng)原理將壓力轉(zhuǎn)換成電感線圈自感量的變化,再由測(cè)量電路轉(zhuǎn)換成電壓或電流的變化,來(lái)判斷按壓操作的檢測(cè)技術(shù)。
電感式壓力傳感器也稱變磁阻式壓力傳感器,由鐵芯、線圈和銜鐵三部分組成。如圖八所示:
圖八 電感式壓力傳感原理
線圈繞在鐵芯上,鐵芯和銜鐵都由導(dǎo)磁材料制成,銜鐵與鐵芯之間的氣隙距離為d,由電磁感應(yīng)定律可知,線圈電感量近似計(jì)算公式為:
其中:
N為繞制在鐵芯上的線圈匝數(shù)
μ0為空氣的磁導(dǎo)率
Ae為鐵芯截面積
d為鐵芯與銜鐵之間的氣隙厚度
L為線圈電感量
可見(jiàn)只要改變鐵芯和銜鐵之間的氣隙或氣隙截面積就可以改變磁路的氣隙磁阻。
當(dāng)壓力作用于銜鐵上,銜鐵和鐵芯之間的氣隙d發(fā)生變化,引起氣隙中的磁阻發(fā)生變化,從而導(dǎo)致線圈電感量的變化。再由處理電路,常用的處理電路有交流電橋式、變壓器式以及諧振式等,把這個(gè)電感的變化轉(zhuǎn)化成相應(yīng)的電信號(hào)輸出,從而達(dá)到判斷按壓動(dòng)作的目的。
電感式壓力傳感器,具有結(jié)構(gòu)相對(duì)簡(jiǎn)單,沒(méi)有活動(dòng)的電觸點(diǎn),壽命長(zhǎng),工作可靠。其致命缺點(diǎn)是自身頻率響應(yīng)低,不適合需要快速動(dòng)態(tài)檢測(cè)的應(yīng)用場(chǎng)景。
4.3 紅外式壓力傳感器檢測(cè)技術(shù)
紅外式壓力傳感器檢測(cè)技術(shù)是利用紅外線的物理特性進(jìn)行按壓位移檢測(cè)的傳感器檢測(cè)技術(shù)。
紅外線是一種不可見(jiàn)光,具有光線的所有特性,比如透射、反射、折射、散射、吸收等等。紅外傳感器根據(jù)紅外光產(chǎn)生的方式可以分為主動(dòng)式紅外傳感器和被動(dòng)式紅外傳感器。在紅外式壓力傳感器檢測(cè)技術(shù)中,使用的是主動(dòng)式紅外傳感器。
主動(dòng)式紅外傳感器技術(shù)主要采用一發(fā)一收的系統(tǒng)結(jié)構(gòu),發(fā)射機(jī)是由電源、發(fā)光源和光學(xué)系統(tǒng)組成,接收機(jī)由光學(xué)系統(tǒng)、光電傳感器、放大器、信號(hào)處理等部分組成。發(fā)射機(jī)中的紅外發(fā)光二極管在電源的激發(fā)下發(fā)出一束經(jīng)調(diào)制的紅外光束,被紅外接收機(jī)接收,把光信號(hào)轉(zhuǎn)成電信號(hào),經(jīng)電路處理后傳輸給MCU處理。從而在發(fā)射機(jī)和接收機(jī)之間形成一條紅外光束組成的警戒線。正常情況下,接收機(jī)接收到一個(gè)穩(wěn)定的光信號(hào),當(dāng)發(fā)射機(jī)和接收機(jī)發(fā)生錯(cuò)位時(shí),或紅外光反射、折射距離變化時(shí),必然會(huì)全部或部分遮擋紅外光束,使得接收機(jī)接收到的紅外信號(hào)發(fā)生變化,輸出的電信號(hào)的強(qiáng)度會(huì)因此發(fā)生變化,從而檢測(cè)出發(fā)生位移。
在使用主動(dòng)式紅外傳感器檢測(cè)位移時(shí),需要保證以下條件:
① 發(fā)射機(jī)和接收機(jī)的安裝位置需要處于同一平面,且?jiàn)A角固定,確保發(fā)射機(jī)發(fā)射出的紅外光被接收機(jī)有效接收。
②當(dāng)發(fā)生位移時(shí),需要發(fā)射機(jī)和接收機(jī)之間的位移要有足夠的大的位移行程,確保紅外信號(hào)的變化能被檢測(cè)出來(lái)。由于需要機(jī)械位移行程,結(jié)構(gòu)上就會(huì)存在空隙,就會(huì)帶來(lái)防水問(wèn)題,這就需要增加額外的結(jié)構(gòu)設(shè)計(jì)來(lái)解決防水問(wèn)題。
?、墼诓煌褂脺囟拳h(huán)境中,發(fā)射機(jī)發(fā)射出的紅外光束不能出現(xiàn)明顯的變化。對(duì)于環(huán)境溫度過(guò)低的場(chǎng)景,需要專用的加熱器以保證探測(cè)器的正常工作。
④在整個(gè)產(chǎn)品的使用周期中,需要為紅外檢測(cè)系統(tǒng)提供一個(gè)相對(duì)干凈、密封的工作環(huán)境,以避免出現(xiàn)水汽、灰塵的臟亂情況,確保在相同位移行程的條件下,產(chǎn)生的信號(hào)變化量一致。
綜上所述,利用紅外檢測(cè)技術(shù)實(shí)現(xiàn)壓感操作,存在如下痛點(diǎn):
?、俳Y(jié)構(gòu)不能設(shè)計(jì)成一體式結(jié)構(gòu),存在防水問(wèn)題。
②對(duì)紅外光發(fā)射裝置和接收裝置安裝位置要求位于同一平面,且?jiàn)A角固定,精度要求高,增加生產(chǎn)裝配難度。
③需要增加額外的防塵、防水設(shè)計(jì),以達(dá)到防塵防水要求,減少紅外光束反射。
?、馨l(fā)光管線性度差,軟件算法復(fù)雜。
⑤系統(tǒng)復(fù)雜,功耗高,器件多,成本高。不能使用在高密度按鍵區(qū)域。
4.4 MEMS壓力傳感器檢測(cè)技術(shù)
MEMS壓力傳感器檢測(cè)方案,是一種高靈敏度的、高集成的、采用硅工藝的壓力檢測(cè)方案。通過(guò)MEMS元器件作為敏感器件,將觸摸表面的形變轉(zhuǎn)化成電壓變化,通過(guò)芯片內(nèi)部電路將電壓模擬量轉(zhuǎn)化為數(shù)字量,再通過(guò)芯片內(nèi)置的比較器,對(duì)按壓操作進(jìn)行判斷。
該方案優(yōu)點(diǎn)在于能檢測(cè)出觸摸按壓面板的微小形變,在理想情況下具有高靈敏度的特性,同時(shí)硬件設(shè)計(jì)簡(jiǎn)單,無(wú)設(shè)計(jì)門檻。與此同時(shí),在產(chǎn)品設(shè)計(jì)、生產(chǎn)過(guò)程及性能方面存在如下問(wèn)題,限制了其大規(guī)模在汽車應(yīng)用的可行性:
?、賯鞲衅餍酒叽缧。穸缺?,強(qiáng)度小,導(dǎo)致芯片在運(yùn)輸、保壓甚至是用戶使用過(guò)程中非常容易損壞,這是高可靠性要求的汽車應(yīng)用中首要規(guī)避的問(wèn)題。
?、谌鐖D九所示,傳感器采用面貼在觸摸按壓面板下方方案時(shí),雙面膠需要足夠的保壓時(shí)間和壓強(qiáng)進(jìn)行激活,由于MEMS芯片表面受力強(qiáng)度有限,保壓貼合難度高。
圖九 MEMS壓力傳感器面貼疊層結(jié)構(gòu)
③如圖十所示,傳感器采用簡(jiǎn)支梁方案將力從觸摸面板直接傳導(dǎo)作用在傳感器表面時(shí),由于MEMS芯片表面受力強(qiáng)度有限,設(shè)計(jì)上要求簡(jiǎn)支梁末端與傳感器表面的位移行程控制在0.1mm±0.05mm范圍內(nèi)。對(duì)結(jié)構(gòu)、裝配精度提出了很高的要求,大大增加了生產(chǎn)難度和生產(chǎn)成本。
圖十 MEMS壓力傳感器 簡(jiǎn)支梁疊層結(jié)構(gòu)
?、苡捎趕ensor布局在芯片底部,焊錫高低,焊接飽滿程度對(duì)芯片靈敏度的影響非常大,對(duì)焊接工藝要求高。
?、軲EMS壓力傳感器輸出的是經(jīng)過(guò)ADC采集的數(shù)字信號(hào),無(wú)法直接測(cè)量傳感器橋臂電阻,可測(cè)量程度較低。
?、迣?duì)于較大面積的智能表面應(yīng)用來(lái)說(shuō),需要多顆傳感器覆蓋整面,MEMS壓力傳感器采用傳感器與測(cè)量芯片合封方式,無(wú)法實(shí)現(xiàn)單顆芯片支持多路壓感傳感器,導(dǎo)致整體成本較高。
4.5 惠斯通電橋柔性壓力傳感器檢測(cè)技術(shù)
4.5.1 基本原理
惠斯通電橋柔性壓力傳感器,是一種基于壓阻式材料的微壓力傳感器,采用惠斯通電橋結(jié)構(gòu),將觸摸表面的按壓形變轉(zhuǎn)化成電壓變化的模擬量??赏瑫r(shí)檢測(cè)拉伸或壓縮兩種應(yīng)變,如果受到的是壓縮力,其電阻值會(huì)限制變??;如果受到的是拉伸力,其電阻值會(huì)顯著變大。
傳感器的原理如圖十一所示:
圖十一 惠斯通電橋傳感原理
傳感器產(chǎn)生的信號(hào)與曲率的關(guān)系為:
其中:
K:應(yīng)變系數(shù)
ε:應(yīng)變
Vcc:傳感器供電電壓
該壓力傳感器檢測(cè)技術(shù)中,影響檢測(cè)靈敏度的關(guān)鍵因數(shù)有兩個(gè),一是傳感器供電質(zhì)量,二是溫度的影響,傳感器電阻值隨溫度變化,如果橋臂上的電阻在不同溫度區(qū)域內(nèi),電阻值溫度變化不同,會(huì)帶來(lái)測(cè)量誤差。上海泰矽微電子有限公司的TCAE31A從硬件以及軟件兩個(gè)方面很好的解決了這兩個(gè)問(wèn)題,TCAE31A芯片內(nèi)部提供了一個(gè)高質(zhì)量低紋波的電源專供傳感器。溫度對(duì)傳感器的影響,則可通過(guò)泰矽微提供的軟件算法實(shí)時(shí)進(jìn)行基線修正和補(bǔ)償。
基于TCAE31A低至3.6uV的電壓分辨率和傳感器的靈敏度,有效量程曲率半徑可達(dá)0.91至1944米,具有極高的靈敏度和形變及壓力承受能力。
4.5.2 獨(dú)特優(yōu)勢(shì)
惠斯通電橋柔性壓力傳感器檢測(cè)技術(shù)具有如下優(yōu)點(diǎn):
?、俑哽`敏度,面板微小的形變即可產(chǎn)生變化較大的電壓差,可直接檢測(cè)面板形變。
?、诿姘宀馁|(zhì)要求寬松,適用性強(qiáng)。
③面板一體化,易實(shí)現(xiàn)整體防水。
?、芤装惭b,可選擇面貼方式貼附在觸摸按壓面板下方,也可貼附在PCB上,選擇簡(jiǎn)支梁方式將力傳導(dǎo)到PCB上,簡(jiǎn)支梁作用點(diǎn)不需作用在傳感器上。
柔性壓力傳感器面貼方案疊層結(jié)構(gòu)如圖十二所示:
圖十二 柔性壓力傳感器面貼疊層結(jié)構(gòu)
柔性壓力傳感器簡(jiǎn)支梁方案疊層結(jié)構(gòu)如圖十三所示:
圖十三 柔性壓力傳感器簡(jiǎn)支梁疊層結(jié)構(gòu)
?、菅b配精度要求不高,生產(chǎn)成本低。
?、蘧哂姓驂鹤栊?yīng),輸出線性度高。
?、邏毫Τ惺苣芰O高,不易損壞。
⑧技術(shù)成熟穩(wěn)定,已在各類全球知名電子產(chǎn)品品牌中累計(jì)生產(chǎn)數(shù)億片,經(jīng)受過(guò)大批量產(chǎn)業(yè)化驗(yàn)證和技術(shù)迭代。
⑨多傳感器應(yīng)用中,傳感器可共用一顆專用芯片,總體成本低。
4.5.3 常見(jiàn)問(wèn)題/FAQ
以下列舉針對(duì)于該傳感技術(shù)的部分常見(jiàn)問(wèn)題,以供參考:
1. 如何考慮高低溫、劇烈振動(dòng)情況所帶來(lái)的PCB材料、膠水材料、壓感傳感器、外殼材料等形變問(wèn)題而產(chǎn)生的數(shù)據(jù)誤判問(wèn)題?
a) 本方案所選用的傳感器在材料選擇上規(guī)避了具有較強(qiáng)粘彈性屬性的高分子材料,可有效控制振動(dòng)和高低溫等環(huán)境變化帶來(lái)的影響。同時(shí),針對(duì)溫度沖擊對(duì)壓感誤報(bào)影響,在算法和方案層面也做了雙重優(yōu)化,即,通過(guò)實(shí)時(shí)基線追蹤修正所有相關(guān)環(huán)節(jié)帶來(lái)的漂移,可有效規(guī)避溫度沖擊帶來(lái)的誤報(bào)。整個(gè)實(shí)現(xiàn)方案,從傳感器材料選型和設(shè)計(jì)到芯片的硬件電路設(shè)計(jì)再到算法,全部都有相應(yīng)原創(chuàng)專利技術(shù)保障整體方案在環(huán)境變化方面的高可靠性。
b) 關(guān)于機(jī)械振動(dòng)給PCB材料、膠水材料、壓感傳感器帶來(lái)的影響主要體現(xiàn)在金屬疲勞和信噪比方面。金屬疲勞主要集中在焊錫上,這一點(diǎn)汽車電子已經(jīng)廣泛使用,非常成熟。信噪比方面主要是通過(guò)芯片內(nèi)部實(shí)現(xiàn)的超低噪聲信號(hào)調(diào)理電路,共模抑制電路及小信號(hào)放大電路予以保障,積分噪聲低至10nV√H z,外加全鏈路22bit的有效分辨率,確保了整個(gè)信號(hào)鏈路的高信噪比性能。
2. 如何考慮生產(chǎn)過(guò)程裝配的一致性,品控保證,測(cè)試方案,良率問(wèn)題?
量產(chǎn)裝配制程必然會(huì)帶來(lái)物理一致性問(wèn)題,本方案所選用的傳感器在其他各類產(chǎn)品上已積累大量量產(chǎn)經(jīng)驗(yàn)。累計(jì)數(shù)量超億片,主要集中在如下兩點(diǎn):1)關(guān)注方案設(shè)計(jì)及制造因素,提前優(yōu)化設(shè)計(jì)制造細(xì)節(jié)要點(diǎn),保障物理一致性及方案信噪比均值,同時(shí)關(guān)注制造過(guò)程中相應(yīng)細(xì)節(jié)實(shí)施。2)產(chǎn)線實(shí)施校準(zhǔn)措施,軟件補(bǔ)償物理一致性。泰矽微會(huì)協(xié)同傳感器廠商全程協(xié)助做好以上兩點(diǎn)的保障,確保量產(chǎn)過(guò)程整體一致性。
3. 壓力方案所帶來(lái)的可能失效的邊界問(wèn)題;
壓感失效可能如下:
a) 方案問(wèn)題,比如方案理論信號(hào)量均值偏低,主要通過(guò)理論仿真和實(shí)驗(yàn)測(cè)試規(guī)避,泰矽微會(huì)協(xié)助每個(gè)客戶的每個(gè)項(xiàng)目進(jìn)行相關(guān)仿真和方案推薦。
b) 制造問(wèn)題,主要通過(guò)理論分析優(yōu)化提前預(yù)警,提出設(shè)計(jì)要點(diǎn)規(guī)避。同時(shí),制造環(huán)節(jié)把控這些干擾項(xiàng)。
c) 可靠性問(wèn)題,關(guān)于這一點(diǎn)主要兩方面。1)方案設(shè)計(jì),確保設(shè)計(jì)合理,規(guī)避風(fēng)險(xiǎn)。2)通過(guò)前期功能機(jī)進(jìn)行相關(guān)合理測(cè)試驗(yàn)證。
4. 壓力傳感器的線性度如何,溫度變化是否會(huì)影響壓力傳感器的工作
本方案采用的壓力傳感器線性度很好,傳感器輸出的差分電壓值跟壓力形變具有標(biāo)準(zhǔn)的線性特性。溫度變化確實(shí)會(huì)對(duì)壓力傳感器的靜態(tài)底噪,還有壓力和形變的斜率關(guān)系造成影響,但影響不了線性特性,只是對(duì)應(yīng)的斜率會(huì)有變化,這個(gè)需要MCU在壓力傳感器的算法里面根據(jù)溫度的因素去做動(dòng)態(tài)調(diào)整。另外溫度變化有時(shí)也會(huì)引起結(jié)構(gòu)件的形變,會(huì)被反映到壓力傳感器上,導(dǎo)致傳感器原始數(shù)據(jù)的底噪整體被提升或者被降低,可在與之配套的MCU在底噪觸發(fā)特定閾值的時(shí)候進(jìn)行offset自動(dòng)動(dòng)態(tài)調(diào)整。
5. 壓力傳感器的靈敏度如何,是否需要每個(gè)按鍵的位置都配置一個(gè)壓力傳感器,如何評(píng)估具體方案中需要多少顆壓力傳感器
該壓力傳感器靈敏度很高,典型值為7000uV/m-1,最大變形曲率1.1 m-1,能夠檢測(cè)到微米級(jí)別的形變。無(wú)需每個(gè)按鍵位置配備一顆芯片進(jìn)行檢測(cè),通過(guò)結(jié)合電容觸控技術(shù),可以做到多個(gè)按鍵共享一顆壓力傳感器,多個(gè)傳感器共用一顆專用MCU,尤其適合智能表面應(yīng)用,具體選用顆數(shù),擺放位置及安裝方式等需經(jīng)過(guò)結(jié)構(gòu)仿真最終得出結(jié)論。泰矽微全程協(xié)助客戶進(jìn)行仿真和方案開(kāi)發(fā)直至量產(chǎn)。
4.6 各壓力傳感檢測(cè)技術(shù)方案特性對(duì)比分析:
表一:壓力傳感檢測(cè)技術(shù)特性對(duì)比
5 泰矽微雙模3D觸控方案介紹
本篇前文分析了傳統(tǒng)電容觸控方案在汽車人機(jī)交互應(yīng)用中的局限性,分析了不同壓感技術(shù)的優(yōu)缺點(diǎn),從中不難得出如下兩個(gè)結(jié)論,1)越來(lái)越多的汽車內(nèi)外飾的智能觸控和智能表面需要結(jié)合多種觸控技術(shù)來(lái)實(shí)現(xiàn)更多更可靠的交互功能;2)電容觸控和基于惠斯通電橋原理的壓力傳感技術(shù)融合方案在目前階段是最優(yōu)組合。通過(guò)壓力傳感可以非??煽康淖R(shí)別按壓動(dòng)作,我們稱之為Z軸觸控,同時(shí),通過(guò)電容觸控來(lái)標(biāo)定按壓的精確位置,稱之為XY軸。通過(guò)兩者融合形成XYZ三軸形成的3D觸控方案。
圖十四 3D觸控示意圖
5.1 泰矽微3D觸控芯片TCAE31A介紹
基于如上融合方案需求,泰矽微于2022年3月發(fā)布了業(yè)內(nèi)首顆車規(guī)級(jí)雙模人機(jī)交互芯片TCAE31A,在單芯片內(nèi)同時(shí)集成了電容觸摸和壓感技術(shù),實(shí)現(xiàn)了真正意義上的3D觸控。方案一經(jīng)推出就獲得了市場(chǎng)高度關(guān)注與青睞,并逐步進(jìn)入多個(gè)主流汽車主機(jī)廠的定點(diǎn)項(xiàng)目中。
圖十五 TCAE31A芯片結(jié)構(gòu)框圖
TCAE31A的產(chǎn)品特性如下:
基于Arm? Cortex?-M0 內(nèi)核,工作主頻高達(dá)32MHz,芯片內(nèi)部集成64KB Flash 和 4 KB SRAM
基于自有專利技術(shù)Tinywork?,實(shí)現(xiàn)外設(shè)之間的信號(hào)聯(lián)動(dòng),可以大大降低應(yīng)用方案的動(dòng)態(tài)功耗
超低功耗設(shè)計(jì),靜態(tài)功耗低至3uA,單通道壓感平均功耗低至18.7uA
單芯片可實(shí)現(xiàn)2路壓感+10路電容觸摸通道,并具備可擴(kuò)展性
內(nèi)置專利技術(shù)的壓感和觸摸融合算法
信號(hào)鏈有效分辨率高達(dá)22位,可提供高靈敏度,高分辨率,高信噪比及高線性度的壓力傳感檢測(cè)
支持LIN通信協(xié)議棧
支持基于UDS的bootloader升級(jí)方案
8kV HBM ESD
滿足AEC-Q100 Grade 2(-40℃~105℃)
QFN28 4mm*4mm*0.75mm封裝
5.2 基于TCAE31A的生態(tài)系統(tǒng)介紹
TCAE31A提供標(biāo)準(zhǔn)的EVK開(kāi)發(fā)套件,完整的SDK開(kāi)發(fā)包,包括數(shù)據(jù)手冊(cè),用戶手冊(cè),驅(qū)動(dòng),樣例,KEIL Pack包,PC端調(diào)試工具等。即使從未接觸過(guò)壓力感應(yīng)和電容觸控技術(shù)的嵌入式工程師,也可以在非常短的時(shí)間內(nèi)完成一個(gè)高質(zhì)量的產(chǎn)品應(yīng)用開(kāi)發(fā)。SDK軟件架構(gòu)如圖十六:
圖十六 TCAE31A軟件架構(gòu)
SDK軟件架構(gòu)的特點(diǎn):
分層設(shè)計(jì)
模塊化
可擴(kuò)展,可維護(hù)
輕量級(jí)
自研輕量級(jí)OS,資源消耗小,結(jié)構(gòu)清晰
消息驅(qū)動(dòng),任務(wù)之間可以通過(guò)消息通信
無(wú)對(duì)立任務(wù)棧,無(wú)上下文切換,時(shí)間片輪轉(zhuǎn),非實(shí)時(shí)搶占
SDK中提供的觸摸相關(guān)功能特性:
算法部分以lib庫(kù)的形式提供
觸摸任務(wù)通過(guò)回調(diào)函數(shù)通知APP觸摸事件的發(fā)生
支持的按鍵觸摸類型識(shí)別
?、侔聪?/p>
?、卺尫?/p>
③雙擊
?、荛L(zhǎng)按
支持的觸摸事件類型
①按鍵
?、诨瑮l
?、勰_踢
圖十七 觸摸軟件流程圖
圖十八 電容觸控算法介紹
SDK中提供的壓感相關(guān)功能特性:
算法部分以lib庫(kù)的形式提供
針對(duì)壓感的固有offset特性,算法會(huì)在初始化的時(shí)候進(jìn)行一次靜態(tài)校準(zhǔn),然后在后面的運(yùn)行過(guò)程中,根據(jù)閾值條件適時(shí)地進(jìn)行動(dòng)態(tài)校準(zhǔn),以確保壓感正常地工作
Lib庫(kù)分為單通道算法庫(kù)和針對(duì)多通道擴(kuò)展的算法庫(kù),理論上最多可支持16通道的壓感,但實(shí)際項(xiàng)目中要受到具體RAM的使用情況的限制,對(duì)于純壓感的應(yīng)用,官方demo用例最多支持到9通道,對(duì)于觸控和壓感雙模的應(yīng)用,官方demo用例在使能觸控的情況下最多支持到7通道
壓感算法架構(gòu)如圖6,壓感多通道擴(kuò)展應(yīng)用如圖7,泰矽微通過(guò)自有專利技術(shù),實(shí)現(xiàn)了多通道壓感信號(hào)自動(dòng)追蹤檢測(cè)的算法,助力客戶在多通道壓感領(lǐng)域的產(chǎn)品創(chuàng)新
圖十九 壓感算法流程圖
泰矽微提供的自有專利技術(shù)的軟件算法充分利用了單芯片并行處理雙模信號(hào)的優(yōu)勢(shì),優(yōu)化了CPU的處理時(shí)間,大大提高了系統(tǒng)的處理效率,能夠快速地給出最后的觸控位置和對(duì)應(yīng)該位置的壓感力度信息,這是構(gòu)建3D觸控的核心所在。針對(duì)壓力傳感器的壓感信號(hào),TCAE31A中的SARADC模塊能夠自動(dòng)進(jìn)行偏置電壓的補(bǔ)償校準(zhǔn),將壓力傳感器由于制造工藝、組裝差異或者溫度變化等客觀因素引起的超出測(cè)量范圍的差分電壓值自動(dòng)調(diào)整到SARADC的工作量程內(nèi)即±100mV之內(nèi)。SARADC模塊采集完原始數(shù)據(jù)后軟件會(huì)進(jìn)入到壓感算法處理中心,進(jìn)行壓感的窗口滑動(dòng)濾波處理和動(dòng)態(tài)溫度補(bǔ)償算法,并進(jìn)行基線自動(dòng)跟蹤,經(jīng)過(guò)SoC的壓感算法處理中心處理之后的信號(hào)即體現(xiàn)為一個(gè)力的信號(hào),是通過(guò)實(shí)時(shí)數(shù)據(jù)跟基線數(shù)據(jù)的差值進(jìn)行算法處理得到的反映按壓力度的一個(gè)值,整個(gè)力度的范圍在1牛頓到10牛頓之間。針對(duì)電容觸控PAD的電容特性信號(hào),當(dāng)手指跟電容PAD接觸的時(shí)候,TinyTouch模塊就會(huì)實(shí)時(shí)地檢測(cè)到外部電容的變化,并輸出一個(gè)跟該電容變化大小相關(guān)的原始數(shù)據(jù)。軟件獲得該原始數(shù)據(jù)后,會(huì)進(jìn)入到觸控算法處理中心,進(jìn)行觸控?cái)?shù)據(jù)的一系列算法處理,包括軟件放大,特征濾波器,判決器,基線跟蹤器以及噪聲檢測(cè)器。其中在判決器模塊會(huì)根據(jù)用戶不同的特征配置,實(shí)現(xiàn)單按鍵,多按鍵,防水,滑條等多種應(yīng)用場(chǎng)景的識(shí)別。在實(shí)際的項(xiàng)目應(yīng)用中電容觸控算法和壓感算法是并行處理的,能夠非常及時(shí)準(zhǔn)確地構(gòu)建出一個(gè)3D觸控的信息。
5.3 泰矽微3D觸控方案獨(dú)特優(yōu)勢(shì)
總體而言,泰矽微3D觸控方案具有如下幾大突出優(yōu)勢(shì):
1)防水效果好:水流容易造成電容誤觸但難以造成壓力觸控的誤觸,壓力和電容采用“與”的方式,水滴或水流同時(shí)觸發(fā)的概率顯著降低,另,通過(guò)兩種方式產(chǎn)生觸發(fā)的精確時(shí)間和波形形態(tài)進(jìn)行二次軟件算法濾波與判斷,可完全杜絕由于水造成的可能的誤觸現(xiàn)象。
2)抗干擾能力強(qiáng):壓力+電容觸控可消除由于靜電,干擾以及無(wú)意觸碰等導(dǎo)致的誤觸現(xiàn)象,大大提高可靠性。
3)EMC性能優(yōu):測(cè)試更易通過(guò),壓力檢測(cè)是差分輸入,內(nèi)在對(duì)共模干擾有很好的抑制作用,加上電橋等效阻抗低(6 KΩ),接收干擾的功率低,抗電磁干擾的性能優(yōu)異。電容電極類似天線,較容易受到干擾,EMC 較難通過(guò),但實(shí)現(xiàn)成本低。通過(guò)結(jié)合壓力和電容可以發(fā)揮兩者各自的優(yōu)勢(shì),縮短開(kāi)發(fā)和測(cè)試周期。
4)裝配方式靈活:壓力檢測(cè)裝配方式靈活,可以采用表貼也可以采用懸臂梁,簡(jiǎn)支梁等結(jié)構(gòu)。使用簡(jiǎn)易。
5)性價(jià)比高:成本不高,采用國(guó)產(chǎn)廠商泰矽微研發(fā)的車規(guī)壓力和電容觸控二合一雙模芯片,配合車規(guī)級(jí)壓力觸控柔性傳感器,整體成本與傳統(tǒng)國(guó)外品牌純電容觸控芯片價(jià)格相當(dāng),但整體可靠性和人機(jī)交互體驗(yàn)提升一大截。具有很高的性價(jià)比。
目前泰矽微3D觸控芯片產(chǎn)品相關(guān)發(fā)明專利近20件,處于業(yè)界領(lǐng)先水平。其獨(dú)有的人機(jī)交互壓力觸控雙模解決方案也已經(jīng)廣泛滲透到汽車領(lǐng)域地多個(gè)細(xì)分應(yīng)用市場(chǎng),相信在不久的將來(lái),必將會(huì)給用戶帶來(lái)更加智能和舒適的產(chǎn)品體驗(yàn)。
6 泰矽微3D觸控技術(shù)在汽車上的典型應(yīng)用介紹
6.1 基于3D觸控技術(shù)的汽車門把手
傳統(tǒng)的門把手都是采用純電容觸摸的檢測(cè)方案,電容觸摸的工作原理決定了這種檢測(cè)方案的防水效果不好,比如下雨,洗車等的場(chǎng)景下很難完全區(qū)分是人手觸摸還是水滴水流造成的電容變化,所以非常容易引起誤觸發(fā),目前還沒(méi)有好的方法完全解決防水問(wèn)題,電容觸摸+壓感的雙重檢測(cè)方案通過(guò)對(duì)電容和壓力的雙重檢測(cè)和融合判斷,大大提高了汽車門把手對(duì)人手按壓動(dòng)作的識(shí)別成功率和防水成功率。
下圖是電容觸控+壓感檢測(cè)門把手的模塊圖:
圖二十 基于3D觸控技術(shù)的門把手方案
電容觸控+壓感檢測(cè)門把手主要有4個(gè)模塊組成:
1:通信模塊:一般采用LIN接口或者載波通信電路,主要用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括檢測(cè)通道和參考通道,主要用于電容檢測(cè)以及一些誤操作場(chǎng)景識(shí)別。
3:壓感檢測(cè)模塊:包括電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)
4:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
泰矽微的電容+壓力檢測(cè)的3D觸控汽車門把手方案采用3個(gè)檢測(cè)通道的方案,分別為電容檢測(cè)通道,電容參考通道,壓力檢測(cè)通道,這3個(gè)通道會(huì)實(shí)時(shí)采集當(dāng)前的電容和壓力數(shù)據(jù),由于水霧,水流和人手按壓對(duì)這3個(gè)通道的影響會(huì)各有差異,所以通過(guò)組合判斷以及對(duì)數(shù)據(jù)的融合處理,可以很好的區(qū)別出各種干擾場(chǎng)景和人手正常觸摸。
6.2 基于3D觸控技術(shù)的汽車尾門開(kāi)關(guān)
目前市面上大部分尾門開(kāi)關(guān)采用的是機(jī)械開(kāi)關(guān)的方案,隨著用戶對(duì)汽車外觀一體化的越來(lái)越高,車廠也在嘗試尾門開(kāi)關(guān)用電容或者紅外的檢測(cè)方式,但是效果都不好,在一些場(chǎng)景下存在誤觸率,泰矽微的電容檢測(cè)+壓力檢測(cè)的方案可以準(zhǔn)確識(shí)別出洗車,擦車,人體倚靠等各種誤觸場(chǎng)景和人手正常按壓,大大提高了檢測(cè)的準(zhǔn)確性。
下圖是電容觸控+壓感檢測(cè)的尾門開(kāi)關(guān)的模塊圖:
圖二十一 基于3D觸控技術(shù)的電尾門開(kāi)關(guān)方案
尾門壓感開(kāi)關(guān)主要有4個(gè)模塊組成:
1:通信模塊:一般采用LIN接口,用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括檢測(cè)通道和防誤觸通道,用于電容檢測(cè)以及一些誤操作場(chǎng)景識(shí)別。
3:壓感檢測(cè)模塊:包括電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)。
4:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
另外,可以根據(jù)客戶具體要求增加背光控制或者震動(dòng)反饋控制。
尾門壓感開(kāi)關(guān)通過(guò)電容檢測(cè)通道,電容防誤觸通道和壓感通道3個(gè)通道的數(shù)據(jù)作為一組數(shù)據(jù)來(lái)智能判斷當(dāng)前各種場(chǎng)景,比如洗車,擦車,人體倚靠,異物按壓和人手正常操作。雖然各個(gè)車廠的尾門LOGO開(kāi)關(guān)存在較大差異,但是由于泰矽微所有電容檢測(cè)和壓力檢測(cè)的算法以及相關(guān)代碼全部是自主開(kāi)發(fā),可以針對(duì)客戶需求進(jìn)行定制化的硬件和軟件設(shè)計(jì),可以根據(jù)具體結(jié)構(gòu)形態(tài)增加相應(yīng)的檢測(cè)模塊,靈活應(yīng)對(duì)各種場(chǎng)景。
6.3 基于3D觸控技術(shù)的汽車中控面板
目前市面的中控面板一般采用純電容觸摸或者電容觸摸+MEMS壓力檢測(cè)的方案,對(duì)于純電容的觸摸方案,普遍存在誤觸率高的缺點(diǎn),而電容觸摸+MEMS壓力檢測(cè)的方案則有MEMS器件在壓力大的情況下容易損壞,對(duì)組裝和公差控制的要求高等缺點(diǎn),生產(chǎn)良率低,而泰矽微的壓力檢測(cè)方案采用電阻式的壓力檢測(cè)sensor,可以采用面貼或者簡(jiǎn)支梁的組裝方式,大大提高了組裝可靠性。
下圖是電容觸控+壓感檢測(cè)的汽車中控面板的模塊圖:
圖二十二 基于3D觸控技術(shù)的汽車中控方案
中控面板檢測(cè)主要有5個(gè)模塊組成:
1:通信模塊:一般采用LIN接口,用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括多路電容檢測(cè)通道,用于確認(rèn)面板各個(gè)按鍵是否觸發(fā)。
3:壓感檢測(cè)模塊:包括是電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)。
4:背光顯示模塊:包括各類LED以及背光驅(qū)動(dòng)電路,對(duì)按鍵事件做各種燈光反饋。
5:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
泰矽微的方案可以根據(jù)面板的材質(zhì)和整個(gè)受力面積進(jìn)行壓力仿真,來(lái)決定放幾路壓感sensor和放置壓感sensor的具體位置,通過(guò)壓感sensor來(lái)檢測(cè)人手是否按壓,通過(guò)電容觸摸來(lái)檢測(cè)人手按壓的具體位置,軟件會(huì)對(duì)各路原始數(shù)據(jù)進(jìn)行相應(yīng)的濾波算法和檢測(cè)算法,最終輸出正確的結(jié)果,并且可以根據(jù)客戶具體需求增加背光或者震動(dòng)反饋來(lái)實(shí)現(xiàn)
6.4 基于3D觸控技術(shù)的汽車智能B柱
目前越來(lái)越多的汽車會(huì)在B柱上增加開(kāi)關(guān)用于智能進(jìn)入,目前的方案多用電容式開(kāi)關(guān),邏輯比較簡(jiǎn)單,當(dāng)手指觸摸到開(kāi)關(guān),即輸出車門開(kāi)門信號(hào)。但是由于電容觸控的工作原理限制,在洗車或者雨天環(huán)境下容易發(fā)生車門誤開(kāi)啟的情況, 泰矽微的電容+壓力雙重檢測(cè)機(jī)制可以保證開(kāi)關(guān)的正確性。
下圖是電容觸控+壓感檢測(cè)的汽車智能B柱的模塊圖:
圖二十三 基于3D觸控技術(shù)的汽車智能B柱方案
智能B柱主要有4個(gè)模塊組成:
1:通信模塊:一般采用LIN接口或者載波通信電路,主要用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括檢測(cè)通道和參考通道,主要用于電容檢測(cè)以及一些誤操作場(chǎng)景識(shí)別。
3:壓感檢測(cè)模塊:包括電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)
4:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
泰矽微的電容+壓力檢測(cè)的智能B柱方案有3個(gè)檢測(cè)通道,分別為電容檢測(cè)通道,電容參考通道,壓力檢測(cè)通道,這3個(gè)通道會(huì)實(shí)時(shí)采集當(dāng)前的電容和壓力數(shù)據(jù),由于洗車的水流和雨水跟人手按壓對(duì)這3個(gè)通道的所采集的數(shù)據(jù)有較大差異,所以通過(guò)組合判斷以及對(duì)數(shù)據(jù)的融合處理,可以很好的區(qū)別出各種干擾場(chǎng)景和人手正常觸摸。
6.5 基于3D觸控技術(shù)方向盤(pán)控制器
目前汽車控制器多采用物理按鍵的方式,隨著汽車內(nèi)飾一體化要求的越來(lái)越高,方向盤(pán)控制器也將采用智能表面的方式,但是由于方向盤(pán)控制器多數(shù)情況下是盲操場(chǎng)景,所以只用純電容檢測(cè)會(huì)導(dǎo)致誤觸的產(chǎn)生,增加壓感也成為了工程師越來(lái)越多的選擇。泰矽微的電容+壓感的3D觸控方案很好的將易操作性和可靠性結(jié)合在一起。
下圖是電容觸控+壓感檢測(cè)的方向盤(pán)控制器的模塊圖:
圖二十四 基于3D觸控技術(shù)的方向盤(pán)按鍵方案
方向盤(pán)控制器主要有5個(gè)模塊組成:
1:通信模塊:一般采用LIN接口,用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括多路電容檢測(cè)通道,用于確認(rèn)面板各個(gè)按鍵是否觸發(fā)。
3:壓感檢測(cè)模塊:包括是電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)。
4:震動(dòng)反饋模塊:包括電機(jī)以及驅(qū)動(dòng)電路,對(duì)按鍵事件做震動(dòng)反饋。
5:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
泰矽微的電容+壓感的3D觸控方向盤(pán)控制器的方案采用壓力sensor來(lái)檢測(cè)人手按壓,用電容檢測(cè)來(lái)定位相關(guān)按鍵位置,并且通過(guò)電機(jī)震動(dòng)對(duì)用戶動(dòng)作的做及時(shí)的反饋,這樣可以保證盲操的正確性和快速反饋。電容按鍵數(shù)量和壓感檢測(cè)數(shù)量可以根據(jù)具體應(yīng)用做增加或者減少。
6.6 基于3D觸控技術(shù)的車窗升降控制器
車窗控制器是一個(gè)對(duì)可靠性要求比較高的應(yīng)用,像下雨天車窗升降開(kāi)關(guān)易碰水,駕駛者行駛過(guò)程中需要盲操,這些問(wèn)題都是純電容方案難以解決的,存在一定的安全隱患。所以需要電容觸摸+壓力雙重檢測(cè)來(lái)保證可靠性和盲操性。
下圖是電容觸控+壓感檢測(cè)的車窗控制器的模塊圖:
圖二十五 基于3D觸控技術(shù)的車窗控制器方案
車窗升降控制器主要有4個(gè)模塊組成:
1:通信模塊:一般采用LIN接口,用于跟主機(jī)通信。
2:電容檢測(cè)模塊:包括幾路電容檢測(cè)通道,用于確認(rèn)具體的按鍵觸發(fā)事件。
3:壓感檢測(cè)模塊:包括是電阻式壓力檢測(cè)模組以及采樣電路,用于對(duì)表面壓力進(jìn)行檢測(cè)。
4:中央數(shù)據(jù)處理模塊:對(duì)電容數(shù)據(jù)和壓感數(shù)據(jù)做融合處理,得到最后的結(jié)果,并通知主機(jī)。
泰矽微的電容+壓感的3D觸控車窗控制器的方案采用壓力sensor來(lái)檢測(cè)人手按壓,用電容檢測(cè)來(lái)定位相關(guān)按鍵位置,并且通過(guò)電機(jī)震動(dòng)對(duì)用戶動(dòng)作的做及時(shí)的反饋,這樣可以保證盲操的正確性和快速反饋。電容按鍵數(shù)量和壓感檢測(cè)數(shù)量可以根據(jù)具體應(yīng)用做增加或者減少。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
基于硬件加速的超低功耗邊緣智能,讓頭疼的“云端求助”走向本地自主化決策
實(shí)時(shí)處理如何驅(qū)動(dòng)高性能電源系統(tǒng)
ADI和Keysight Technologies強(qiáng)強(qiáng)聯(lián)手 共推相控陣技術(shù)加速部署