選擇合適的電池電量計(jì),實(shí)現(xiàn)高精準(zhǔn)度的電池建模
發(fā)布時(shí)間:2017-10-26 來源:Nazzareno (Reno) Rossetti,Bakul Damle 責(zé)任編輯:wenwei
【導(dǎo)讀】穿戴式設(shè)備正在推動(dòng)一個(gè)極具吸引力且成長(zhǎng)快速的市場(chǎng),其中智能手表(Smart Watch)持續(xù)保持主導(dǎo)地位。在這種密集且競(jìng)爭(zhēng)激烈的環(huán)境下,每一個(gè)制造商都力爭(zhēng)將產(chǎn)品率先投入市場(chǎng),而消費(fèi)者則需要其裝置具有最精確、最長(zhǎng)的電池運(yùn)作時(shí)間(圖1)。本文討論與電池容量管理關(guān)鍵功能密切相關(guān)的要求,并提出一種能夠克服挑戰(zhàn)的顛覆性技術(shù)。
圖1:智能手表發(fā)出充電完成的訊號(hào)。
上市時(shí)間的挑戰(zhàn)
最佳的電池性能依賴于驅(qū)動(dòng)電量計(jì)算法的高精準(zhǔn)度及高質(zhì)量電池模型?;ㄙM(fèi)大量時(shí)間進(jìn)行客制的特性分析能夠獲得高精準(zhǔn)度的電池性能、最小化電池電量(SOC)的誤差,以及正確預(yù)測(cè)電池何時(shí)接近沒電的狀態(tài)。
儲(chǔ)存在電池中的能量(以mAhr為單位)依賴于多種參數(shù),如負(fù)載和溫度。因此,開發(fā)者必須在各種條件下對(duì)電池進(jìn)行特性分析。在選取了與電池行為一致的模型后,即可將其裝載到電量計(jì)芯片。這種嚴(yán)密的監(jiān)控過程能夠?qū)崿F(xiàn)更安全的電池充電和放電。
由于電量計(jì)特性化只能滿足大量生產(chǎn)的客戶,不能顧及所有其他客戶,不僅帶來了上市時(shí)間的問題,也成為制造商發(fā)展的阻礙。傳統(tǒng)上,IC供貨商專注于高產(chǎn)量的應(yīng)用,因?yàn)槟P瓦x取通常需要大量的實(shí)驗(yàn)室工作,而只有少數(shù)IC供貨商擁有所需的資源。
電池運(yùn)作時(shí)間的挑戰(zhàn)
較差電池模型所帶來的嚴(yán)重后果之一就是運(yùn)作時(shí)間估算不準(zhǔn)確。典型的智能手表使用模型在為期1天的循環(huán)過程中,包括5小時(shí)主動(dòng)狀態(tài)(包括對(duì)時(shí)、通知、app使用、音樂播放、通話,以及訓(xùn)練)和19小時(shí)被動(dòng)狀態(tài)(僅對(duì)時(shí))。為期1天的循環(huán)中,如果裝置在主動(dòng)模式下的功耗為40mA,在被動(dòng)模式下的功耗為4mA,那么將消耗總共276mAh,正好是典型智能手表電池的大約容量。為避免裝置操作的非預(yù)期或過早中斷,就必須準(zhǔn)確預(yù)測(cè)電池運(yùn)作時(shí)間。
運(yùn)作時(shí)間的持續(xù)時(shí)間也同樣重要。被動(dòng)模式下,同一電池可能維持長(zhǎng)達(dá)69小時(shí)(276mAh/4mA)。功耗為50μA的典型電量計(jì)將縮短大約52分鐘的電池被動(dòng)運(yùn)作時(shí)間,是不可忽略的時(shí)間量。
EZ解決方案
Maxim Integrated開發(fā)了一種算法,能夠準(zhǔn)確估算電池的充電狀態(tài),且能夠安全地運(yùn)用在大多數(shù)電池上。該算法在研究了常見鋰電池特性后開發(fā)。
ModelGauge m5 EZ算法(簡(jiǎn)稱EZ)采用針對(duì)具體應(yīng)用的電池模型,嵌入到電量計(jì)IC內(nèi)部。設(shè)計(jì)師利用評(píng)估套件所提供的簡(jiǎn)單組態(tài)精靈,可產(chǎn)生電池模型。系統(tǒng)設(shè)計(jì)師只需提供三條訊息:
1.容量(通常會(huì)顯示在電池卷標(biāo)或數(shù)據(jù)表);
2.沒電時(shí)所對(duì)應(yīng)的電池電壓為(依賴于應(yīng)用情形);
3. 電池充電電壓(是否高于4.275V)。
使用EZ,系統(tǒng)設(shè)計(jì)師不再需要執(zhí)行特性分析,因?yàn)檫@實(shí)際上已由電量計(jì)供貨商完成。
包含在EZ算法中的多種適應(yīng)機(jī)制能夠幫助電量計(jì)學(xué)習(xí)電池特性,進(jìn)一步提高精準(zhǔn)度。這樣的算法可保證電池電壓接近沒電時(shí),電量計(jì)輸出收斂到0%,因此,電量計(jì)能夠在電池電壓達(dá)到?jīng)]電的同時(shí)準(zhǔn)確指示SOC為0%。
如果我們假設(shè)SOC預(yù)測(cè)的系統(tǒng)誤差預(yù)算為3%,EZ模型能夠覆蓋95.5%的放電測(cè)試用例——非常接近人工定制模型的性能,后者覆蓋97.7%的測(cè)試用例。如圖2所示,當(dāng)電池接近沒電時(shí),EZ方法的表現(xiàn)也是一樣的,這點(diǎn)特別重要。
圖2:EZ系統(tǒng)誤差性能。
對(duì)于許多使用者來說,僅知道SOC或剩余電量是不夠的,他們真正想知道的是剩余電量可提供多少運(yùn)作時(shí)間。最簡(jiǎn)單的方法,例如將剩余電量除以當(dāng)前或預(yù)期負(fù)載,可能會(huì)造成估算結(jié)果過于樂觀。EZ算法能夠根據(jù)電池參數(shù)、溫度、負(fù)載效應(yīng),以及應(yīng)用的空電壓,提供精準(zhǔn)度高出很多的剩余運(yùn)作時(shí)間估算結(jié)果。
有了EZ算法,大產(chǎn)量的制造商可將EZ作為快速開發(fā)的起始點(diǎn);在具有運(yùn)作雛型之后,即可選擇精細(xì)調(diào)諧過的電池模型。而小產(chǎn)量的制造商可利用EZ為電池建立配對(duì)模型,并可以兼容絕大多數(shù)電池。
采用ModelGauge m5 EZ的單電池電量計(jì)
EZ算法被內(nèi)建到MAX17055獨(dú)立式單電池電量計(jì)IC中。裝置擁有0.7μA關(guān)機(jī)電流、7μA休眠模式電流和18μA運(yùn)作電流,可理想用于電池供電的穿戴式裝置,還可透過I2C接口存取數(shù)據(jù)和控制緩存器。
系統(tǒng)誤差的競(jìng)爭(zhēng)產(chǎn)品分析
圖3所示為系統(tǒng)誤差的競(jìng)爭(zhēng)產(chǎn)品分析。從柱狀圖可以看出,接近電池沒電時(shí),MAX17055在大多數(shù)測(cè)試用例(26個(gè)中的15個(gè))下的誤差在1%以內(nèi)。
圖3:系統(tǒng)誤差的競(jìng)爭(zhēng)產(chǎn)品分析。
運(yùn)作時(shí)間精準(zhǔn)度競(jìng)爭(zhēng)優(yōu)勢(shì)
接近沒電時(shí)的低誤差可確保電池電量最佳的使用,最大程度延長(zhǎng)運(yùn)作時(shí)間,以及最小化操作裝置的非預(yù)期或過早中斷。
運(yùn)作時(shí)間延長(zhǎng)競(jìng)爭(zhēng)優(yōu)勢(shì)
使用具有低靜態(tài)電流的電量計(jì)IC,可有效延長(zhǎng)運(yùn)作時(shí)間。MAX17055的靜態(tài)電流為18μA,比最相近競(jìng)爭(zhēng)裝置的靜態(tài)電流低64%。此外,在低功耗休眠模式下,裝置僅消耗7μA電流。將其應(yīng)用到以上討論的情況,可將受影響的運(yùn)作時(shí)間從52分鐘降低到7分鐘——實(shí)質(zhì)性的性能改善。
總結(jié)
本文重點(diǎn)討論了有效率的電量計(jì)系統(tǒng)中電池建模的重要性,以最大化電池運(yùn)作時(shí)期的精準(zhǔn)度和持續(xù)時(shí)間,還探討了取得高精準(zhǔn)度電池模型的障礙,這一障礙將延長(zhǎng)上市時(shí)間、影響低產(chǎn)量電池應(yīng)用的擴(kuò)散。MAX17055內(nèi)建一種以ModelGaugem5EZ算法為基礎(chǔ)的顛覆性方法,使電池系統(tǒng)開發(fā)更快速、更簡(jiǎn)單、更具成本效益,并為廣泛的應(yīng)用提供更好得電池性能。
作者:Nazzareno (Reno) Rossetti,Maxim Integrated資深作者;Bakul Damle,移動(dòng)電源事業(yè)管理部總監(jiān)。
推薦閱讀:
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器