二極管整流和同步整流的效率比較
發(fā)布時(shí)間:2020-10-04 責(zé)任編輯:wenwei
【導(dǎo)讀】本文給出了一組數(shù)據(jù),是二次側(cè)替換前的二極管整流方式AC/DC轉(zhuǎn)換器和將二次側(cè)替換為二次側(cè)同步整流用電源IC BM1R00147F之后的AC/DC轉(zhuǎn)換器的效率比較數(shù)據(jù)。
二次側(cè)二極管整流方式AC/DC轉(zhuǎn)換器和二次側(cè)同步整流方式AC/DC轉(zhuǎn)換器的效率比較
本系列文章探討了旨在將現(xiàn)有二次側(cè)二極管整流方式AC/DC轉(zhuǎn)換器的二次側(cè)替換為二次側(cè)同步整流用電源IC,改為同步整流方式來改善效率的設(shè)計(jì)案例。這里給出使用替換前的二次側(cè)二極管整流方式、替換為BM1R00147F后的高邊型和低邊型共3種評(píng)估板實(shí)測(cè)效率得出的結(jié)果。測(cè)試條件為輸入電壓400VDC、輸出電壓5VDC、輸出電流0~10A。
上圖為輸出電流(Iout)整個(gè)范圍的效率。橙色曲線是替換前的二極管整流方式的效率。藍(lán)色和紅色為替換為同步整流方式后的效率,藍(lán)色為低邊型,紅色為高邊型。由于兩者的效率幾乎同等,所以高邊型的紅色曲線隱藏在低邊型的藍(lán)色曲線后面。從圖中還可以看出橙色的二極管整流方式的效率較差,右側(cè)是將縱軸放大后的圖。
結(jié)果表明,在最大負(fù)載10A條件下,替換前的二次側(cè)二極管整流方式的效率為77.3%,替換后為81.3%(低邊)和81.6%(高邊),效率提高了4%。
該效率差主要是二次側(cè)整流二極管和替換后的MOSFET的損耗差。二次側(cè)整流二極管通常使用FRD(快速恢復(fù)二極管)和SBD(肖特基勢(shì)壘二極管)等。案例中的電源所使用的這些二極管的VF通常為0.5A~1V左右,因此根據(jù)簡(jiǎn)單的傳導(dǎo)損耗公式VF×Iout,假設(shè)VF為1V,計(jì)算當(dāng)Iout=10A時(shí)的損耗,得出10W的傳導(dǎo)損耗。而用于替換的MOSFET的傳導(dǎo)損耗Ron×Iout2,在Ron=4mΩ(根據(jù)MOSFET規(guī)格)時(shí)僅為0.4W,是二極管的1/25。
當(dāng)然,實(shí)際的效率必須考慮開關(guān)損耗等其他損耗因素,因此不會(huì)這樣簡(jiǎn)單地比較,但二次側(cè)整流元件的損耗是主要損耗,這一點(diǎn)是可以理解的。所以可以說,在無法顯著改善二極管自身VF特性的情況下,改為二次側(cè)同步整流方式是大幅改善二次側(cè)二極管整流方式AC/DC轉(zhuǎn)換器效率的有效選擇。
下面給出所用評(píng)估板的電路圖和部件表作為參考。請(qǐng)注意,這里提到的效率僅是該評(píng)估中的結(jié)果,效率可能會(huì)因所使用部件的特性波動(dòng)和PCB布局等的不同而有所變動(dòng)。
關(guān)鍵要點(diǎn):
● 以往的二次側(cè)二極管整流方式和替換后的同步整流方式的效率相比,很明顯,同步整流方式的效率更高。
● 同步整流方式中,高邊方式和低邊方式的效率基本沒有差別。
● 效率差的主要因素是二極管整流的二極管損耗(VF)和同步整流的MOSFET損耗(VDS)之間的差。
推薦閱讀:
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡(jiǎn)介
- ESR 對(duì)陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對(duì)陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對(duì)微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會(huì)議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動(dòng)開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測(cè)力傳感器
測(cè)試測(cè)量
測(cè)試設(shè)備
拆解
場(chǎng)效應(yīng)管
超霸科技
超級(jí)本
超級(jí)電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊