為你的flyback瘦身,甩掉多余的緩沖器
發(fā)布時間:2021-01-05 責(zé)任編輯:wenwei
【導(dǎo)讀】在過去至少20年間,MOSFET已經(jīng)被選擇為很多開關(guān)模式電源設(shè)計的開關(guān)器件。由于它們較高的開關(guān)速度和更加簡便的驅(qū)動特性,MOSFET已經(jīng)取代了很多應(yīng)用與功率級中的雙極性結(jié)型晶體管 (BJT)。然而,對于基于反激式的低功率AC/DC充電器等應(yīng)用,相對MOSFET,BJT具有某些明顯的優(yōu)勢。
由于它們不同的器件結(jié)構(gòu),高壓BJT的制造成本要低于高壓MOSFET。正因如此,額定電壓在1kV或者以上的BJT的價格要低于通用輸入離線反激式轉(zhuǎn)換器中常見的600V或650V MOSFET。
優(yōu)勢是顯而易見的。由于BJT具有較高的電壓額定值,泄露尖峰會高出幾百伏特,不過仍然處于所要求的開關(guān)降額設(shè)計范圍內(nèi)。根據(jù)尖峰的幅度不同,常常有可能在不使開關(guān)過壓的情況下完全移除緩沖器。
移除緩沖器
優(yōu)點:
● 減少了物料清單 (BOM) 上的組件數(shù)量,從而實現(xiàn)一個更小、成本有效性更高的解決方案。更為重要的一點是,你可以移除緩沖器二極管,而這通常是一個600V的部件。
● 減少連接至高壓開關(guān)節(jié)點的組件數(shù)量,從而減小這個節(jié)點的面積。由于較高的瞬時電壓變化率 (dv/dt) 和較大的電壓擺幅,這個節(jié)點中任何的寄生電容都會產(chǎn)生很明顯的有害電流。這些電流會產(chǎn)生噪聲信號,進而干擾到控制器或者是電路板上的其它器件,或者是來自電源的電磁干擾,因此需要濾波以滿足協(xié)調(diào)放射標(biāo)準(zhǔn)。
● 通過節(jié)省由緩沖器電阻器上的穩(wěn)定狀態(tài)電壓所導(dǎo)致的功率耗散 (= Vreflected/Rsnubber2 ), 可以提高效率。
高輸入電壓
另外一個可以利用BJT高壓額定值的應(yīng)用就是帶有高壓或三相輸入的應(yīng)用。一個標(biāo)準(zhǔn)的230V三相輸入將有一個大約565Vdc的峰值線路至線路電壓。這個峰值電壓往往是連接在一個單相位之間的設(shè)備的額定值要求,在故障情況下,這個負載的一個相位會使中性點電壓被拉至其中一個線路電壓。雖然很多設(shè)計人員用大型、昂貴且具有較高RDSON 的MOSFET來實現(xiàn)這個條件下的開關(guān)額定值,或者通過將兩個電壓較低的MOSFET級聯(lián)在一起去實現(xiàn)所需額定值,但使用單個高壓BJT可以同時減少系統(tǒng)尺寸,減少系統(tǒng)成本。
設(shè)計注意事項-EMI。
不使用緩沖器的設(shè)計人員也許會擔(dān)心未經(jīng)緩沖的電壓振鈴將增加元件的傳導(dǎo)性放射,并因此需要額外的濾波。
圖1和4顯示的是在緩沖器安裝和移除后,同一元件傳導(dǎo)性放射間的差異。這些波形顯示了兩種情況下泄露電感尖峰間的差異。
如你所見,移除緩沖器不會在泄露電感振鈴頻率上(大約15MHz)測量到任何的傳導(dǎo)性放射差異。
圖1:230VAC – 6.5W負載下,未安裝緩沖器時的傳導(dǎo)性放射曲線圖
圖2:按照圖3中的波形,230VAC – 6.5W負載下,安裝了緩沖器時的傳導(dǎo)性放射曲線圖
設(shè)計注意事項—驅(qū)動電路。
基極驅(qū)動電流、晶體管的電流增益和反激式變壓器的磁性電感組合在一起決定了BJT反激式電路能夠提供的峰值功率。這些參數(shù)必須能夠支持工作頻率下,傳送所需輸出功率所要求的初級峰值電流。
對于一個斷續(xù)模式反激式電路的POUT為:
在這里
一個被用作開關(guān)的BJT必須在間隔時間內(nèi)被驅(qū)動為飽和狀態(tài),以最大限度地減少接通狀態(tài)傳導(dǎo)損耗。換句話說,為了生成集電極電流,你必須為BJT提供更多的基極電流,這將才能使集電極電流在初級電感內(nèi)流動:
當(dāng)基極電壓低于Vth時,會使基極中過多的載流子重新組合,延遲了FET的關(guān)閉。非常有必要盡可能減小這個關(guān)閉延遲的占空比,基于這個原因,BJT上的開關(guān)頻率受到限制,通常為60kHz左右。
理想情況下,提供的基極電流使器件剛剛通過飽和區(qū)域,并在接通時間結(jié)束時到達激活區(qū)域,從而減少了關(guān)閉時的載流子數(shù)量,并減少了關(guān)閉延遲。
圖5:器件區(qū)域與Ic、Ib和Vce之間的關(guān)系
BJT所需要的驅(qū)動越來越復(fù)雜是MOSFET在很多應(yīng)用中取而代之的一個原因。諸如TI UCC28720和UCC28722等器件已經(jīng)通過根據(jù)負載動態(tài)調(diào)節(jié)驅(qū)動電流解決了這個問題。在更低的負載水平上,減少的基極電流確保了基極區(qū)域在關(guān)閉時不會有大量的剩余電荷。
這些器件在驅(qū)動引腳上還特有一個1W拉電阻,以便在關(guān)閉期間使基極-發(fā)射極結(jié)短接,這樣的話,BJT可以保持額定集電極到發(fā)射極 (VCES) 電壓。為了保持VCES 額定值,需要在關(guān)閉期間用一個低阻抗連接將基極節(jié)點與接地短接,并且需要確保在集電極電壓上升到高于Vceo 之前,集電極電流已經(jīng)停止傳送,以避免二次擊穿。
UCC28720和UCC28722為系統(tǒng)設(shè)計人員簡化了驅(qū)動,并且實現(xiàn)了針對低功率反激式電路的功率BJT插槽式解決方案,從而減少了組件數(shù)量,并降低了系統(tǒng)成本。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動化和互聯(lián)化的未來
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動放大器系列
技術(shù)文章更多>>
- 使用手持頻譜儀搭配高級軟件:精準(zhǔn)捕獲隱匿射頻信號
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
- 機電繼電器的特性及其在信號切換中的選型和應(yīng)用
- 雙向電源設(shè)計的優(yōu)點
- 利用兩個元件實現(xiàn) L 型網(wǎng)絡(luò)阻抗匹配
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索