基于DC-DC轉(zhuǎn)換器的選型及設(shè)計(jì)詳細(xì)指南(一)
發(fā)布時(shí)間:2021-01-20 責(zé)任編輯:lina
【導(dǎo)讀】板載DC-DC轉(zhuǎn)換器的規(guī)格是重要且詳細(xì)的過程。選型正確后,它會(huì)產(chǎn)生符合所有應(yīng)用的經(jīng)濟(jì)高效的解決方案。錯(cuò)誤選擇轉(zhuǎn)換器會(huì)導(dǎo)致成本過高,或者不適合該應(yīng)用。本常見問題解答將介紹板載DC/DC轉(zhuǎn)換器的主要規(guī)格,以及包括熱管理和電磁兼容性考慮因素。
DC/DC轉(zhuǎn)換器的規(guī)格說明
板載DC-DC轉(zhuǎn)換器的規(guī)格是重要且詳細(xì)的過程。選型正確后,它會(huì)產(chǎn)生符合所有應(yīng)用的經(jīng)濟(jì)高效的解決方案。錯(cuò)誤選擇轉(zhuǎn)換器會(huì)導(dǎo)致成本過高,或者不適合該應(yīng)用。本常見問題解答將介紹板載DC/DC轉(zhuǎn)換器的主要規(guī)格,以及包括熱管理和電磁兼容性考慮因素。
這款效率為96%的40A負(fù)載點(diǎn)(PoL)非隔離式板裝DC/DC轉(zhuǎn)換器尺寸為33mm x 13.5mm x 10.2mm。(圖片:TDK)
效率通常是DC/DC轉(zhuǎn)換器最重要的規(guī)格,它對(duì)系統(tǒng)設(shè)計(jì)的許多方面都具有重大影響。即使在高效率的設(shè)計(jì)中,效率的提高也會(huì)產(chǎn)生重大影響。效率為95%的設(shè)計(jì)熱損耗為5%,效率為80%的DC/DC轉(zhuǎn)換器熱損耗為20%,相差四倍。這種差異會(huì)影響系統(tǒng)設(shè)計(jì)的許多方面:
可以降低工作溫度,或者可以在相同工作溫度下提高系統(tǒng)功率密度
系統(tǒng)的物理尺寸減小
由于可使用較小甚至無需使用散熱器,因此系統(tǒng)成本將更低
可靠性大幅提高
對(duì)于交流電源系統(tǒng),前端交流/直流電源將更小且成本更低
電池供電的系統(tǒng)可以使用較小的電池或在給定的供電水平下運(yùn)行更長(zhǎng)時(shí)間
對(duì)系統(tǒng)的能源成本和環(huán)境影響將減少
5V DC/1A輸出的DC / DC轉(zhuǎn)換器在各種輸入電壓下的效率曲線。圖片:RECOM
效率可以通過多種方式體現(xiàn),例如在各種輸入電壓電平,各種輸出功率電平等情況下的典型值(非常常見),保證的最小值。并且,在所考慮的范圍內(nèi),效率通常不是平坦的。對(duì)于輸出功率與效率的關(guān)系,重要的是要考慮效率曲線的形狀,并將其與系統(tǒng)的預(yù)期運(yùn)行狀態(tài)相匹配,以在實(shí)際運(yùn)行條件下最大化效率。
在許多應(yīng)用中,尤其是電池供電的設(shè)備,空載功耗可能是重要的指標(biāo),它與開關(guān)電路的功耗有關(guān),是整體效率的限制因素。
輸出調(diào)節(jié)
額定輸出電流是一個(gè)簡(jiǎn)單明了的規(guī)格。某些DC/DC轉(zhuǎn)換器還規(guī)定了最小負(fù)載。根據(jù)轉(zhuǎn)換器的不同,低于最小負(fù)載的運(yùn)行會(huì)對(duì)電壓調(diào)節(jié)產(chǎn)生負(fù)面影響,但不會(huì)損壞轉(zhuǎn)換器。輸出電壓是要指定的更復(fù)雜的參數(shù)。提供用于指定輸出電壓的起點(diǎn)的兩個(gè)因素是標(biāo)稱值或“設(shè)定點(diǎn)”,以及該標(biāo)稱值與各種獨(dú)立參數(shù)(例如輸出負(fù)載的變化,輸入電壓的變化和工作溫度變化。)
設(shè)定值規(guī)格的一個(gè)例子是在額定輸入電壓,滿載和25°C下為±1%。電源和負(fù)載調(diào)整率通常指定為百分比或絕對(duì)范圍,例如,±0.1%或±5mV。溫度調(diào)節(jié)通常指定為“每攝氏度”,例如±0.01%/°C或百萬分之一(PPM),如PPM /°C所示。一些DC/DC轉(zhuǎn)換器供應(yīng)商提供了針對(duì)所有可能變化的“總調(diào)節(jié)”的單一規(guī)范,而不是提供上面概述的各個(gè)規(guī)范。對(duì)于低于3V的電壓,詳細(xì)規(guī)定輸出電壓調(diào)節(jié)可能更為重要。
在典型應(yīng)用中,與輸出負(fù)載水平相比,在系統(tǒng)運(yùn)行期間,線路輸入電壓和工作溫度變化相對(duì)較小。結(jié)果,負(fù)載調(diào)節(jié)是更關(guān)鍵的規(guī)格。另外,由于輸出負(fù)載中階躍函數(shù)的變化而產(chǎn)生動(dòng)態(tài)電壓調(diào)節(jié)(有時(shí)稱為瞬態(tài)響應(yīng))。
動(dòng)態(tài)調(diào)節(jié)
對(duì)于許多系統(tǒng),動(dòng)態(tài)調(diào)節(jié)比靜態(tài)電壓調(diào)節(jié)更為關(guān)鍵。在指定動(dòng)態(tài)調(diào)節(jié)時(shí),有必要對(duì)負(fù)載的絕對(duì)變化,變化率,“恢復(fù)”的定義以及達(dá)到恢復(fù)的時(shí)間進(jìn)行量化。例如:“負(fù)載變化為25%至75%,dI/dt為0.1A/µs,最大偏差為3%,并在200ms內(nèi)恢復(fù)到設(shè)定值的1%。”輸出電壓將在電流增加時(shí)減小,而在電流減小時(shí)增加。
輸出電壓動(dòng)態(tài)調(diào)節(jié),顯示瞬態(tài)響應(yīng)偏差和恢復(fù)時(shí)間。(圖片:Keysight Technologies)
動(dòng)態(tài)響應(yīng)既是系統(tǒng)設(shè)計(jì)的考慮因素,也是電源設(shè)計(jì)的考慮因素。配電網(wǎng)絡(luò)的阻抗和去耦設(shè)計(jì)對(duì)動(dòng)態(tài)調(diào)節(jié)具有重大影響。對(duì)于板上安裝的DC/DC轉(zhuǎn)換器,為FPGA和微處理器等大型數(shù)字IC供電時(shí),動(dòng)態(tài)調(diào)節(jié)尤其重要。
開關(guān)DC/DC轉(zhuǎn)換器的輸出包含低頻(紋波)和高頻(噪聲)分量,通常以0至20或50 MHz的峰峰值表示。對(duì)于5V輸出,紋波和噪聲的典型規(guī)格峰峰值為75mV。紋波的頻率與轉(zhuǎn)換器的開關(guān)頻率有關(guān)。噪聲的可變性更大,并且是由開關(guān)模式轉(zhuǎn)換器工作中固有的高dI/dt寄生電感振鈴引起的。噪聲在開關(guān)轉(zhuǎn)換期間突然出現(xiàn),并疊加在較低的頻率紋波上。使用板載DC / DC轉(zhuǎn)換器時(shí)電磁兼容性需要詳細(xì)考慮。
保護(hù)功能
過流保護(hù)旨在保護(hù)轉(zhuǎn)換器免受系統(tǒng)故障(例如短路)的影響。有三種常見的方法來實(shí)現(xiàn)限流保護(hù),最大限流,折返限流和打嗝限流。在最大電流限制中,負(fù)載電流被限制在不超過最大值的范圍內(nèi)。當(dāng)達(dá)到該值時(shí),輸出電壓下降。在電流限制階段,DC / DC轉(zhuǎn)換器中的功耗通常比正常操作中的功耗高。折返電流限制可在檢測(cè)到故障時(shí)降低輸出電流。與最大電流限制相比,這可以實(shí)現(xiàn)較低的最大功耗。但是,折返電流限制可能會(huì)在啟動(dòng)時(shí)提供較少的電流。結(jié)果,如果啟動(dòng)期間的負(fù)載電流大于折返電流極限支持的值,則輸出的上升速度會(huì)變慢,否則轉(zhuǎn)換器可能無法啟動(dòng)。
當(dāng)電流檢測(cè)電路在打嗝電流限制中發(fā)現(xiàn)過電流情況時(shí),DC/DC轉(zhuǎn)換器將關(guān)閉一段時(shí)間,然后嘗試再次啟動(dòng)。如果消除了過載條件,轉(zhuǎn)換器將啟動(dòng)并正常運(yùn)行;否則,控制器將認(rèn)為是另一種過電流情況并關(guān)閉,重復(fù)該循環(huán)。打嗝操作消除了其他兩種過流保護(hù)方法的缺點(diǎn)。但是,由于需要定時(shí)電路,因此更加復(fù)雜。
打嗝電流限制比最大電流限制或折返電流限制更為復(fù)雜。帶有打ic保護(hù)功能的轉(zhuǎn)換器每次嘗試重新啟動(dòng)時(shí)都會(huì)發(fā)出“滴答”聲。圖片:RECOM
通常,將轉(zhuǎn)換器故障導(dǎo)致的輸出過壓條件鉗位在特定水平。裝置通常在短路狀態(tài)下發(fā)生故障,從而防止損壞主機(jī)系統(tǒng)。某些DC/DC轉(zhuǎn)換器還具有欠壓鎖定功能,可在低輸入電壓下將其關(guān)閉。轉(zhuǎn)換器在“掉電模式”下工作,在該模式下,輸出功率受限,以防止過多的輸入電流流入。
一般規(guī)格
在特定應(yīng)用中,許多附加規(guī)范可能很重要,例如用于轉(zhuǎn)換器配置和監(jiān)視的PMBus通信功能。遠(yuǎn)程開關(guān)功能可控制多個(gè)轉(zhuǎn)換器的上電和斷電順序或出于安全原因選擇遠(yuǎn)程,遙感功能對(duì)某些應(yīng)用可能很重要。
大多數(shù)板上安裝的DC/DC轉(zhuǎn)換器是非隔離的降壓轉(zhuǎn)換器。不過,有時(shí)還是需要隔離轉(zhuǎn)換器,并且需要指定隔離電壓的水平。隔離電容也很重要,主要是隔離式轉(zhuǎn)換器中變壓器初級(jí)繞組和次級(jí)繞組之間的寄生耦合。
二、EMC和EMI
電磁兼容性(EMC)和電磁干擾(EMI)是影響電源系統(tǒng)設(shè)計(jì)的系統(tǒng)級(jí)考慮,尤其是在分布式電源架構(gòu)(DPA)中使用多個(gè)板載DC / DC轉(zhuǎn)換器的情況下。EMC / EMI是一個(gè)多方面的考慮因素,其中包括轉(zhuǎn)換器的輸入和輸出的差模和共模噪聲,輻射噪聲和傳導(dǎo)噪聲以及轉(zhuǎn)換器的磁化率和發(fā)射水平。
EMC被定義為即使在給定范圍內(nèi)遭受各種EMI形式影響,設(shè)備仍可按規(guī)定運(yùn)行的能力。板上安裝的DC / DC轉(zhuǎn)換器可能是很大的EMI源,必須對(duì)其進(jìn)行控制以確保系統(tǒng)正常運(yùn)行。而且它還容易受到干擾,特別是在輸入側(cè)。
高頻板上安裝的DC / DC轉(zhuǎn)換器需要選擇轉(zhuǎn)換器中磁性元件的尺寸最小化,從而減小了整體解決方案。使用較小的無源器件可以使設(shè)計(jì)緊湊的電路更為簡(jiǎn)單,從而獲得更好的EMC / EMI特性。
但是,高頻也會(huì)導(dǎo)致轉(zhuǎn)換器中電源開關(guān)電路的EMI增加。原因之一是陡峭的MOSFET開關(guān)沿導(dǎo)致較高的dI / dt(取決于上升時(shí)間,其頻率高達(dá)幾百M(fèi)Hz),這受MOSFET輸出電容,結(jié)電容,肖特基二極管的反向恢復(fù)電容等因素。
電磁兼容/電磁干擾
EMI耦合機(jī)制(圖片來源:Boyd Corp.)
如上所述,EMI可以通過傳導(dǎo),輻射或耦合發(fā)射的形式出現(xiàn)。根據(jù)應(yīng)用和系統(tǒng)設(shè)計(jì),在DPA中使用多個(gè)板上安裝的降壓DC / DC轉(zhuǎn)換器時(shí),每種EMI產(chǎn)生方式都可能成為一個(gè)重大問題。
傳導(dǎo)發(fā)射是通過導(dǎo)線,電路板走線等帶入電子系統(tǒng)的有害電磁能量。它可以采取共?;虿钅#ㄒ卜Q為正常模式)能量的形式。
耦合發(fā)射包括從干擾源到電子系統(tǒng)的電容或電感耦合的電磁能。
輻射發(fā)射是從干擾源到電子系統(tǒng)的整個(gè)空間輻射的電磁能。
EMI標(biāo)準(zhǔn)
有兩種類型的EMC標(biāo)準(zhǔn),基本和與通用/產(chǎn)品相關(guān)。像IEC 61000-4和CISPR 16一樣,基本EMC標(biāo)準(zhǔn)也沒有規(guī)定發(fā)射限值或抗擾度測(cè)試等級(jí)。它們指定如何執(zhí)行測(cè)量。通用EMC標(biāo)準(zhǔn)和產(chǎn)品(系列)EMC標(biāo)準(zhǔn)(例如CISPR / EN 55022/32和FCC)指定了限制和測(cè)試級(jí)別,有關(guān)測(cè)試設(shè)置和方法規(guī)范,請(qǐng)參閱Basic EMC出版物。
IT和多媒體設(shè)備的設(shè)計(jì)者必須在適用的150kHz至30MHz頻率范圍內(nèi)使用準(zhǔn)峰值和平均信號(hào)檢測(cè)器來滿足傳導(dǎo)發(fā)射的EN 55022/32 A類和B類限制。必須同時(shí)滿足準(zhǔn)峰值和均值限制。專為北美市場(chǎng)設(shè)計(jì)的產(chǎn)品必須符合FCC 15規(guī)定的等效限制。B類設(shè)置的傳導(dǎo)排放限值與CISPR 22和EN 55022/32中的限值相同。
CISPR / EN 55022/32 A類和B類準(zhǔn)峰值(QP)和平均(AVG)傳導(dǎo)發(fā)射限值(圖片:德州儀器(Texas Instruments))
IEC 61000基本EMC標(biāo)準(zhǔn)由幾個(gè)部分組成。常規(guī)(61000-1),環(huán)境(61000-2),限值(61000-3),測(cè)試和測(cè)量技術(shù)(61000-4),安裝指南(61000-5),通用標(biāo)準(zhǔn)(61000-6),其他(61000-9)。
CISPR 1‐6基本EMC標(biāo)準(zhǔn)包括四個(gè)部分:CISPR 16-1有六個(gè)子部分,并指定了電壓,電流和現(xiàn)場(chǎng)測(cè)量設(shè)備以及測(cè)試地點(diǎn)。這些包括測(cè)量設(shè)備的校準(zhǔn)和驗(yàn)證。CISPR 16-2有五個(gè)子部分,規(guī)定了測(cè)量高頻EMC現(xiàn)象,應(yīng)對(duì)干擾和抗擾度的方法。CISPR 16-3是IEC技術(shù)報(bào)告(TR),其中包含特定的技術(shù)報(bào)告和有關(guān)CISPR歷史的信息。CISPR 16-4包括五個(gè)子部分,其中包含與不確定性,統(tǒng)計(jì)數(shù)據(jù)和極限建模有關(guān)的信息。
傳導(dǎo)性EMI的主要非軍事通用/產(chǎn)品標(biāo)準(zhǔn)摘要(圖片:德州儀器)
遏制EMI
控制EMI很重要,原因有二:不符合上述EMI標(biāo)準(zhǔn)的系統(tǒng)在許多市場(chǎng)都被禁止,并且EMI過多會(huì)降低系統(tǒng)性能。EMI是一個(gè)多維問題,有幾種途徑控制EMI。如果使用可靠供應(yīng)商提供的板裝DC / DC轉(zhuǎn)換器,通常不會(huì)出現(xiàn)輻射發(fā)射和耦合發(fā)射問題。但是,轉(zhuǎn)換器的輸入端需要注意以最小化轉(zhuǎn)換器的傳導(dǎo)發(fā)射連接到電源總線上,并處理可能對(duì)電源總線的瞬變敏感影響轉(zhuǎn)換器性能的可能性。一些一般的注意事項(xiàng)包括:
電路設(shè)計(jì):保持電流環(huán)路較小,以最大程度地減少導(dǎo)體通過感應(yīng)或輻射耦合能量的能力,并設(shè)計(jì)適當(dāng)?shù)碾娙萜骱驮O(shè)計(jì)中的其他組件以最大程度地減少耦合。此外,使用將頻率展頻與開關(guān)頻率抖動(dòng)相結(jié)合的板上安裝式DC / DC轉(zhuǎn)換器,可以通過允許在任何一個(gè)相當(dāng)長(zhǎng)的時(shí)間內(nèi)保持在任何一個(gè)頻率上發(fā)射,從而有效地降低EMI。
采用2x 2板載封裝的六側(cè)屏蔽60W隔離式DC / DC轉(zhuǎn)換器。圖片:RECOM
過濾器:將過濾器盡可能靠近轉(zhuǎn)換器。旁路電容引線應(yīng)盡可能短。在典型的板裝降壓DC / DC轉(zhuǎn)換器應(yīng)用中,輸入濾波通常是最關(guān)鍵的。功率MOSFET與輸出之間有一個(gè)電感,至少在某種程度上減輕了EMI。但是,輸入側(cè)的EMI會(huì)在整個(gè)系統(tǒng)中傳播,因?yàn)樗鼘⒂芍麟娫纯偩€承載。盡管輸入側(cè)最為關(guān)鍵,但在考慮EMI時(shí)忽略輸出側(cè)并非明智之舉。對(duì)于板上安裝的DC / DC轉(zhuǎn)換器供應(yīng)商,通常在數(shù)據(jù)表中列出滿足特定EMC / EMI標(biāo)準(zhǔn)所需的外部組件。
屏蔽:有一個(gè)經(jīng)驗(yàn)法則,當(dāng)頻率低于200MHz時(shí),接地可能是可行的解決方案,但是當(dāng)頻率高于200MHz時(shí),它會(huì)產(chǎn)生輻射,最好的解決方案就是屏蔽。對(duì)于電信,過程控制,廣播,工業(yè)以及測(cè)試和測(cè)量設(shè)備等應(yīng)用,通常建議使用帶有六面金屬屏蔽的板裝式DC / DC轉(zhuǎn)換器來最大化EMC / EMI性能。
歸根結(jié)底,EMC / EMI是系統(tǒng)級(jí)問題。優(yōu)化板載DC / DC轉(zhuǎn)換器的EMC / EMI性能是一個(gè)重要的考慮因素,但是其他系統(tǒng)元素通常對(duì)EMC / EMI性能更重要。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 復(fù)雜的RF PCB焊接該如何確保恰到好處?
- 電源效率測(cè)試
- 科技的洪荒之力:可穿戴設(shè)備中的MEMS傳感器 助運(yùn)動(dòng)員爭(zhēng)金奪銀
- 輕松滿足檢測(cè)距離,勞易測(cè)新型電感式傳感器IS 200系列
- Aigtek推出ATA-400系列高壓功率放大器
- TDK推出使用壽命更長(zhǎng)和熱點(diǎn)溫度更高的全新氮?dú)馓畛淙嘟涣鳛V波電容器
- 博瑞集信推出低噪聲、高增益平坦度、低功耗 | 低噪聲放大器系列
技術(shù)文章更多>>
- 如何選擇和應(yīng)用機(jī)電繼電器實(shí)現(xiàn)多功能且可靠的信號(hào)切換
- 基于APM32F411的移動(dòng)電源控制板應(yīng)用方案
- 數(shù)字儀表與模擬儀表:它們有何區(qū)別?
- 聚焦制造業(yè)企業(yè)貨量旺季“急難愁盼”,跨越速運(yùn)打出紓困“連招”
- 選擇LDO時(shí)的主要考慮因素和挑戰(zhàn)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器