【導(dǎo)讀】前述文章,BUCK功率級(jí)電路頻域計(jì)算及仿真 ,討論了電壓模式BUCK電路的功率級(jí)電路計(jì)算及仿真,并進(jìn)行了頻域的閉環(huán)設(shè)計(jì)。由于峰值電流模式相比電壓模式具有不少優(yōu)點(diǎn),所以應(yīng)用也很廣泛,本文就對(duì)峰值電流模式控制BUCK功率級(jí)電路做一些詳細(xì)分析計(jì)算和仿真。
一、峰值電流模式的基本運(yùn)行原理
先回顧一下峰值電流模式BUCK電路的基本運(yùn)行原理,其基本原理框圖如圖1所示。
圖1 峰值電流模式BUCK基本電路框圖
從圖1的基本框圖分析來(lái)看,在電壓模式中的固定頻率鋸齒波,已經(jīng)被電流采樣電壓波形所代替,它和電壓控制環(huán)的輸出誤差去比較,以此產(chǎn)生占空比的下降沿信號(hào),占空比的上升沿由一個(gè)固定頻率的時(shí)鐘所產(chǎn)生。基于以上分析,誤差放大器輸出并不是直接控制占空比,而是控制峰值電流,如圖2所示,當(dāng)電流峰值達(dá)到電壓環(huán)輸出后,占空比的下降沿就會(huì)產(chǎn)生。
圖2 誤差放大器輸出控制峰值電流
二、峰值電流模式BUCK的頻域簡(jiǎn)易模型
基于上述分析,峰值電流控制模式BUCK可以看作一個(gè)電壓控制電流源,電感電流峰值由電壓環(huán)誤差輸出決定,系數(shù)是電流環(huán)調(diào)制器增益,則基于這個(gè)模型很容易求得峰值電流模式的控制量Vc到輸出電壓Vo的頻域傳遞函數(shù)。這里我們采用簡(jiǎn)易模型,假設(shè)電流環(huán)將LC二階極點(diǎn)系統(tǒng)變?yōu)橐浑A極點(diǎn)系統(tǒng),電感的作用在電流環(huán)的作用下消失了,這在直流和低頻下來(lái)說是適用的。
圖3 峰值電流控制模式Power Stage電壓控制電流源模型
圖4 BUCK電路峰值電流模式控制到輸出的傳遞函數(shù)
由圖4中的控制Vc到輸出Vo簡(jiǎn)化傳遞函數(shù)來(lái)看,可以將其看作一個(gè)一階環(huán)節(jié),其直流增益為G0,具有一個(gè)零點(diǎn)和一個(gè)極點(diǎn)。由上述表達(dá)式來(lái)看,其零點(diǎn)決定于輸出電容及其ESR電阻,其極點(diǎn)決定于輸出電容及負(fù)載電阻,此時(shí),相對(duì)于負(fù)載電阻來(lái)說ESR電阻非常小,也可以忽略ESR電阻。
圖5 BUCK電路峰值電流控制模式的功率級(jí)電路零點(diǎn)和極點(diǎn)
圖6 BUCK電路峰值電流控制模式的功率級(jí)電路Bode圖
由上述計(jì)算得到的零極點(diǎn),我們畫出功率級(jí)期望的Bode圖,如圖6所示,在低頻段直流增益取決于G0,F(xiàn)p極點(diǎn)處增益以-20db/10倍頻斜率下掉,相應(yīng)的相位產(chǎn)生90C的滯后,在輸出電容ESR零點(diǎn)處,增益又產(chǎn)生20db/10倍頻的斜率變化,所以變?yōu)橐粭l水平線,相應(yīng)的相位又回到0C.
三、BUCK電路峰值電流模式控制直流增益及功率級(jí)零極點(diǎn)計(jì)算
為了方便計(jì)算,定義BUCK電路功率級(jí)的相關(guān)參數(shù),如下圖7所示。
圖7 功率級(jí)計(jì)算參數(shù)定義
圖7中,定義BUCK電路輸入電壓為9V,輸出電壓為3.3V,負(fù)載電阻為3.3ohm(對(duì)應(yīng)負(fù)載電流為1A),輸出電容為100uF,Rc為其ESR電阻,輸出電感為10uH,RL為其寄生串聯(lián)電阻ESL,Ri為電流采樣的比例增益設(shè)為0.1。
峰值電流模式在占空比大于50%時(shí),需要對(duì)采樣電流波形增加斜坡補(bǔ)償才能讓環(huán)路穩(wěn)定,否則會(huì)造成次諧波震蕩,振蕩頻率為一半的開關(guān)頻率。對(duì)于BUCK變換器來(lái)說,電流轉(zhuǎn)化為電壓后的上升沿的斜率為如下式定義,
而電流轉(zhuǎn)化為電壓后下降沿的斜率,由下式定義,
這里需要加的斜坡補(bǔ)償量設(shè)為下降沿斜率,關(guān)于斜坡補(bǔ)償?shù)木唧w分析我們后面會(huì)詳細(xì)討論,這里先采用這一結(jié)論,計(jì)算得到整個(gè)周期的斜坡補(bǔ)償電壓為如下式,所示。
由于調(diào)制器的增益由輸出電阻和電流環(huán)增益所分壓,由此求得控制到輸出的直流關(guān)系如下式所示。
根據(jù)斜波補(bǔ)償?shù)挠?jì)算,以及PWM調(diào)制器的傳遞函數(shù)的概念,可計(jì)算上式中峰值電流模式的直流增益,如下圖8,計(jì)算得知直流增益為27.8db。
圖8 峰值電流模式控制到輸出直流增益
圖9 峰值電流模式BUCK控制到輸出的傳遞函數(shù)
根據(jù)圖3所示的電壓控制電流源模型,我們可以推導(dǎo)出控制到輸出的傳遞函數(shù)如圖9所示,將s=0,則得知其直流增益為KI.同時(shí),我們可以在此簡(jiǎn)化模型上得知功率級(jí)包含一個(gè)極點(diǎn)和一個(gè)零點(diǎn),我們計(jì)算其轉(zhuǎn)折頻率如下圖10所示。
圖10 峰值電流模式BUCK零極點(diǎn)計(jì)算
圖11 峰值電流模式BUCK控制到輸出增益曲線
從圖11的控制到輸出傳遞函數(shù)增益曲線上看,低頻時(shí)是一個(gè)不到30db的直流增益,在大約500Hz附近,有一個(gè)極點(diǎn)使得增益曲線斜率為-20db/10倍頻,在大約40k附近,出現(xiàn)一個(gè)零點(diǎn),讓增益曲線的斜率變回0db/10倍頻。
圖12 峰值電流模式BUCK控制到輸出相位曲線
從圖12相位曲線上看,對(duì)應(yīng)于增益曲線,極點(diǎn)讓相位滯后約90C,零點(diǎn)又讓相位回到起始的0C,符合我們的上述分析。
圖13 穿越頻率/相位裕量/低頻增益計(jì)算
在上述控制到輸出的傳遞函數(shù)的相位及增益曲線上,很容易求得一些關(guān)鍵參數(shù),如穿越頻率,相位裕量,低頻增益等,結(jié)果如圖13所示,我們可知穿越頻率為12.37k,相位裕量為110C,低頻增益為27.9db。
圖14 零極點(diǎn)處的相位和增益計(jì)算
在功率級(jí)傳遞函數(shù)的Bode圖上,還可以求得零極點(diǎn)對(duì)應(yīng)的增益和相位,如極點(diǎn)處相位滯后為-45C左右,零點(diǎn)處在極點(diǎn)10倍頻時(shí)滯后的相位90C基礎(chǔ)上,又提升了45C,所以零點(diǎn)處相位滯后還是為-45C,以上符合分析。
四、峰值電流模式BUCK電路功率級(jí)仿真驗(yàn)證
圖15 峰值電流模式BUCK功率級(jí)時(shí)域及小信號(hào)仿真
在上圖15中,給出了峰值電流模式BUCK電路的開環(huán)仿真原理圖,非常簡(jiǎn)潔。參數(shù)設(shè)置和上述第三部分的計(jì)算一致。例如,輸入電壓9V,電壓控制電流源的電壓為142mv時(shí),輸出電壓為3.3V,同時(shí)斜坡補(bǔ)償在整個(gè)周期最大值為66mV,和上述計(jì)算一致。電流采樣增益,按照Ri=0.1,采用電流控制電壓源設(shè)置,其它參數(shù)也可以參考上述第三部分計(jì)算,此處不一一詳述。
圖16 峰值電流模式控制BUCK開環(huán)仿真波形1
在上面圖16中,到的時(shí)域仿真波形自上到下分別為斜坡補(bǔ)償后的電流采樣電壓V_CS,電壓環(huán)給定V_COMP,開關(guān)節(jié)點(diǎn)電壓SW,開關(guān)管下管驅(qū)動(dòng)波形PWM1L。
圖17 峰值電流模式控制BUCK開環(huán)仿真波形2
在上面圖17中,得到的時(shí)域仿真波形2自上到下分別為開關(guān)管門級(jí)上管驅(qū)動(dòng)波形PWM1H_mos,開關(guān)管上管驅(qū)動(dòng)波形PWM1H,輸入電流波形IVIN,續(xù)流二極管也就是死區(qū)電流波形ID1.
圖18 峰值電流模式控制BUCK開環(huán)仿真波形3
在上面圖18中,得到的時(shí)域仿真波形3自上到下分別為續(xù)流管mosfet的波形IS2,電感電流波形IL,輸出電壓波形VOUT.
根據(jù)以上開環(huán)仿真波形,可以判斷基本上是我們期望的合理的開環(huán)電路波形。接下來(lái),進(jìn)行小信號(hào)環(huán)路仿真,事先在電路中放置了環(huán)路Bode圖測(cè)試儀器,及在電壓環(huán)輸出施加了小信號(hào)干擾源。
圖19 峰值電流模式控制BUCK電路功率級(jí)Bode圖
從圖19小信號(hào)開環(huán)仿真結(jié)果來(lái)看,得到控制到輸出的傳遞函數(shù)對(duì)應(yīng)的Bode圖,從圖上看,穿越頻率為16.97k,負(fù)載極點(diǎn)頻率為637Hz,和理論計(jì)算有一些差異,可能源于計(jì)算負(fù)載極點(diǎn)的模型不夠精確。
采用計(jì)算負(fù)載極點(diǎn)的非簡(jiǎn)化模型,即不忽略KD(此處KD為1.33)參數(shù),如下圖20所示計(jì)算,得知負(fù)載極點(diǎn)為641Hz,和仿真模型比較一致。由于傳遞函數(shù)模型簡(jiǎn)化,所以計(jì)算得到的穿越頻率和實(shí)際仿真值相比稍低。
圖20 未忽略KD時(shí)的負(fù)載極點(diǎn)頻率計(jì)算
圖21 峰值電流模式控制BUCK電路功率級(jí)低頻增益測(cè)量
從圖19測(cè)量增益曲線來(lái)看,低頻增益為27.8db,和計(jì)算結(jié)果非常一致。從測(cè)試的相位來(lái)看,相位為70C,因此相位裕量為110C,和計(jì)算結(jié)果也很一致。
總結(jié),本文通過分析峰值電流模式BUCK電路的功率級(jí)電路模型,計(jì)算了從控制到輸出傳遞函數(shù)的一些非常重要的參數(shù)如直流增益,穿越頻率,零極點(diǎn)頻率等,并且通過仿真進(jìn)行了驗(yàn)證,為后續(xù)峰值電流模式BUCK電路閉環(huán)補(bǔ)償設(shè)計(jì)奠定基礎(chǔ)。
來(lái)源:電源漫談 ,作者電源漫談
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
基于TI MSPM0 MCU的車載充電機(jī)插槍喚醒方案
BQ769x2溫度采樣配置及其溫度模型系數(shù)計(jì)算