本文將重點(diǎn)討論靜態(tài)特性,并闡述一種由輸出頻譜中觀察到的諧波成分導(dǎo)出DAC 傳遞函數(shù)的方法。分析中假設(shè),傳遞函數(shù)而非瞬態(tài)輸出特性是所觀察到的諧波失真的主要來(lái)源。此假設(shè)在低頻時(shí)成立。
由DAC諧波頻譜成分重構(gòu)其傳遞函數(shù)
發(fā)布時(shí)間:2019-12-07 責(zé)任編輯:wenwei
【導(dǎo)讀】所有DAC都會(huì)表現(xiàn)出一定程度的諧波失真,諧波失真是用來(lái)衡量當(dāng)DAC輸入端采用一個(gè)理想的均勻采樣正弦波的數(shù)值序列驅(qū)動(dòng)時(shí),其輸出端能在多大程度上再現(xiàn)這個(gè)理想的正弦波。由于DAC的瞬態(tài)和靜態(tài)特性并不理想,因此輸出頻譜將會(huì)包含諧波成分。DAC的瞬態(tài)輸出特性包括壓擺率限制、非對(duì)稱上升和下降時(shí)間、有限建立時(shí)間。靜態(tài)特性與傳遞函數(shù)偏離直線的程度有關(guān)。
本文將重點(diǎn)討論靜態(tài)特性,并闡述一種由輸出頻譜中觀察到的諧波成分導(dǎo)出DAC 傳遞函數(shù)的方法。分析中假設(shè),傳遞函數(shù)而非瞬態(tài)輸出特性是所觀察到的諧波失真的主要來(lái)源。此假設(shè)在低頻時(shí)成立。
DAC傳遞函數(shù)
圖1顯示一個(gè)理想的DAC傳遞函數(shù),它是一條斜線,y=mx+b. 數(shù)字輸入位于x軸,模擬輸出位于y軸。
圖1. 理想的DAC傳遞函數(shù)
x軸上的目標(biāo)范圍是從左邊的最小碼(A)到右邊的最大碼(B)。y軸上的目標(biāo)范圍是從底部的最小輸出值(C)到接近頂部的最大輸出值(D)。定 義理想傳遞函數(shù)的斜率(m)和y軸截距(b)的方程式用邊界值A(chǔ)、B、C、D表示。信號(hào)g(t)代表一個(gè)無(wú)失真的正弦波,由A至B范圍內(nèi)的數(shù)字輸入組成,時(shí)間軸向下。信號(hào) u(t)代表模擬輸出,其值在C至D范圍內(nèi),時(shí)間軸向右。
輸出信號(hào)是通過(guò)傳遞函數(shù)反射的輸入信號(hào)。請(qǐng)注意,輸出信號(hào)是將g(t)上各點(diǎn)鏈接到u(t)上相應(yīng)點(diǎn)的結(jié)果。圖1顯示在特定時(shí)間點(diǎn) t=tk的傳遞操作例子,該時(shí)間點(diǎn)確定輸入信號(hào)上的點(diǎn)g(tk)。傳遞函數(shù)進(jìn)而將g(tk)鏈接到輸出信號(hào)上的相應(yīng)點(diǎn)u(tk)。對(duì)于理想的線性傳遞函數(shù), u(t)與g(t)成比例關(guān)系。請(qǐng)注意,g(tk)對(duì)應(yīng)于x軸上的點(diǎn)xk,它通過(guò)傳遞函數(shù)反射至y軸上的點(diǎn)yk。借助關(guān)于耦合點(diǎn)集(g(t n),u(tn))的已有知識(shí),可以確定傳遞函數(shù)上的相關(guān)點(diǎn)(x n,y n)。因此,通過(guò)輸入信號(hào)g(t)上的點(diǎn)與輸出信號(hào)u(t) 上的點(diǎn)之間的關(guān)系,完全可定義傳遞函數(shù)。
對(duì)于N位DAC,邊界值A(chǔ)和B取特定值,即 A = 0 且 B = 2N–1。 而為了方便起見(jiàn),指定邊界值C和D為 C = A 且 D = B。 這樣意味實(shí)際DAC 輸出信號(hào)的比例和偏移,因而其峰峰值范圍為0至 2N–1。 利用A、B、C、D的這些值,因?yàn)樾甭?m = 1 且截距 b = 0。所以理想傳遞函數(shù)可簡(jiǎn)化為 y=x。
到目前為止,討論的重點(diǎn)還是理想的DAC傳遞函數(shù),但現(xiàn)在我們有了可以處理失真DAC傳遞函數(shù)f(x)的工具,如圖2所示。需要注意的主要 特點(diǎn)是:傳遞函數(shù)不再是直線y=x,而是一個(gè)形狀函數(shù)f(x);圖中隨意以平滑弧形來(lái)表示。f(x)對(duì)輸出函數(shù)u(t)的影響也同樣重要。理想輸入 g(t)通過(guò)傳遞函數(shù)f(x)反射,產(chǎn)生失真輸出u(t)。與現(xiàn)成DAC的傳遞函數(shù)相比,圖中所示的弧形傳遞函數(shù)較為夸張,僅為加強(qiáng)說(shuō)明效果而已。 現(xiàn)代DAC的傳遞函數(shù)與理想的直線幾乎沒(méi)有偏差,但即使最微小的偏差也會(huì)導(dǎo)致輸出頻譜中出現(xiàn)諧波雜散。
圖2. 失真的DAC傳遞函數(shù)
能否成功重構(gòu)DAC傳遞函數(shù),取決于是否能通過(guò)已知的g(t)和u(t)確定 各點(diǎn)(xk,f(xk))。這一過(guò)程分為兩步:首先采用一個(gè)代表理想采樣正弦 波的數(shù)值序列驅(qū)動(dòng)DAC輸入,利用頻譜分析儀測(cè)量DAC輸出,并記錄 基波信號(hào)和盡可能多諧波成分的幅值;然后將測(cè)得的諧波幅值轉(zhuǎn)換 為特定形狀的傳遞函數(shù)。如果操作得當(dāng),將g(t)代入f(x)仿真u(t)將產(chǎn) 生與測(cè)量結(jié)果相同的諧波失真值。
第一步:測(cè)量DAC諧波
第一步需要一個(gè)輸入序列,用來(lái)代表一個(gè)以等距時(shí)間間隔采樣的 理想正弦波周期。目標(biāo)是重構(gòu)DAC傳遞函數(shù),因此從0到2N–1的每個(gè) DAC碼必須在輸入信號(hào)中至少出現(xiàn)一次。輸入序列需要2N以上的采 樣點(diǎn)才能以等距間隔使用每個(gè)DAC碼,實(shí)際上至少需要2N+3個(gè)采樣 才能保證每個(gè)碼都出現(xiàn)。下式可產(chǎn)生2K DAC碼的理想正弦序列(K≥ N+3)。函數(shù)round{x}將x舍入為最近的整數(shù)。
where n=0,1,2,3, ... 2K–1
此方程式假設(shè)DAC將標(biāo)準(zhǔn)二進(jìn)制格式的數(shù)字輸入字解碼為0至2N–1 范圍內(nèi)的無(wú)符號(hào)整數(shù)。對(duì)于偏移二進(jìn)制或二進(jìn)制補(bǔ)碼DAC,必須調(diào) 整gn以表示負(fù)值。
數(shù)值序列(gn)以采樣速率f s重復(fù)提供給DAC,因此DAC輸出頻譜含有 頻率f0=f s/2k的基波信號(hào)。諧波出現(xiàn)在2f0、3f0、4f0和f0的其它整數(shù)倍。 由于DAC輸出頻譜具有采樣性質(zhì),因此這些諧波的幅度受sin(x)/x響 應(yīng)的限制。不過(guò),f0與fs相比微不足道,因此sin(x)/x響應(yīng)實(shí)際上是平 坦的,可忽略不計(jì)。例如,對(duì)于一個(gè)8位DAC,K≥11且f0≤fs/2048,100次 諧波的sin(x)/x將不超過(guò)0.39%(0.034 dB)。
為了準(zhǔn)確重構(gòu)傳遞函數(shù)f(x),需要根據(jù)諧波數(shù)(h)集盡可能記錄更多諧 波的幅值。這些整數(shù)從h=1(基波頻率)至h=H,其中H表示取測(cè)量幅 值的最高諧波數(shù)。例如,對(duì)于10次諧波的測(cè)量,H=10,該諧波數(shù)集為 h={1, 2, 3, .. 10}。
然后,將各測(cè)量諧波的幅值(M)與其諧波數(shù)關(guān)聯(lián)。例如,M1是1次諧波 (基波)的幅值,M2是2次諧波的幅值,依此類推至MH。諧波幅值通常 用相對(duì)于基波幅值的分貝數(shù)(dBc)來(lái)衡量。dBc轉(zhuǎn)換為線性單位的公 式如下:
其中D表示測(cè)得的諧波幅值,單位為dBc。例如,如果3次諧波的幅值 為–40 dBc,則線性幅值M3=10–40/20或0.01。M1始終等于1,因?yàn)楦鶕?jù) 定義,基波的幅值為0 dBc。
第二步:重構(gòu)DAC傳遞函數(shù)
該過(guò)程的第二步涉及到將諧波測(cè)量結(jié)果與傳遞函數(shù)相關(guān)。f(x)上的點(diǎn) 取決于g(t)和u(t)上對(duì)應(yīng)點(diǎn)之間的關(guān)系,因此首先必須將頻域中的諧 波幅值轉(zhuǎn)換到時(shí)域。請(qǐng)注意,組成g(t)的DAC碼與g(t)正弦形式的相關(guān) 時(shí)間點(diǎn)一一對(duì)應(yīng)。因此,構(gòu)成g(t)的DAC碼與時(shí)域相關(guān)。此外,u(t)通 過(guò)f(x)與g(t)相關(guān),而g(t)是一個(gè)時(shí)域函數(shù),因此u(t)也必須表示為時(shí)域 函數(shù)。這樣就能將g(t)中的各時(shí)間點(diǎn)tk鏈接到u(t)中的相關(guān)時(shí)間點(diǎn),從 而由g(t)和u(t)確定f(x)。
將諧波幅值轉(zhuǎn)換到時(shí)域非常困難,因?yàn)閒(x)必須明確與g(t)中的各可 能DAC碼(0至2N–1)相關(guān)。g(t)是一個(gè)理想正弦波,因此確保唯一性 的唯一方法是將范圍限制在該正弦波單調(diào)增加的位置,如圖3加粗 部分所示。如果沒(méi)有這一限制條件,f(x)上的一個(gè)點(diǎn)可能會(huì)映射到g(t) 上的兩個(gè)點(diǎn),從而導(dǎo)致不明確。
為演示這種不定性,請(qǐng)想象將區(qū)間T向下移動(dòng)?,F(xiàn)在,f(x)上的點(diǎn)(xk, f(xk))可以與g(t)上的兩個(gè)點(diǎn)相關(guān),這是不可接受的。將范圍T限制在 圖中所示位置,將不存在不定性。g(t)為正弦波,因此所需范圍T對(duì)應(yīng) 于½周期,其初始相位偏移為3π/2弧度。
圖3. f(x)與g(t)之間的關(guān)系
g(t)的范圍受T限制意味著u(t)也具有類似的范圍限制。因此,將所記錄的諧波幅值轉(zhuǎn)換到時(shí)域時(shí),必須確保將u(t)限制在與g(t)相同的范圍T,如圖4所示。
圖4. g(t)和u(t)的時(shí)域范圍
請(qǐng)注意,實(shí)際的時(shí)間范圍T無(wú)關(guān)緊要,因?yàn)閒(x)僅在g(t)和u(t)二者的幅 值之間起轉(zhuǎn)換作用。為簡(jiǎn)化分析,將基波頻率(f0)歸一化為1。因此,2 次諧波的頻率為2,3次諧波的頻率為3,如此類推。所以,諧波頻率 與諧波數(shù)(h)相等:fh=h。這一便捷關(guān)系可簡(jiǎn)化從諧波測(cè)量結(jié)果Mh創(chuàng) 建u(t)的數(shù)學(xué)計(jì)算。
正弦波的一般時(shí)域表達(dá)式為:
其中β為峰值振幅,θ為初始相位偏移。
用h代替f,并用Mh代替β,可以獲得各諧波uh(t)的時(shí)域表達(dá)式。不過(guò) 應(yīng)記住,g(t)偏 移3π/2弧度。此外,g(t)與u(t)之間通過(guò)f(x)關(guān)聯(lián)意味著 g(t)和u(t)在相位上是對(duì)準(zhǔn)的。用3π/2代替θ可提供所需的對(duì)準(zhǔn)。下式 中,請(qǐng)注意0≤t<1且π取代了2π,目的是將基波限制在范圍T所表示的 半個(gè)周期:
利用各諧波uh(t)的時(shí)域表達(dá)式,便可以重構(gòu)復(fù)合輸出u(t),表示為基 波和諧波信號(hào)的和:
如前所述,我們的目標(biāo)是將g(t)與u(t)相關(guān)以重構(gòu)DAC傳遞函數(shù)f(x)。此 外,g(t)必須恰好由2N個(gè)樣本組成,以便與f(x)上的點(diǎn)一一對(duì)應(yīng)。因此, g(t)的樣本計(jì)算公式為:
(n=0,1,2,3 .. 2N–1)
g(t)由2N個(gè)樣本組成,因此由包括2N個(gè)采樣的u(t)采樣值集重構(gòu)f(x)似 乎是合理的。然而,事實(shí)卻是至少需要2N+3個(gè)采樣才能為較小的Mh 值提供適當(dāng)?shù)木取_@種情況下,u(t)各采樣點(diǎn)的計(jì)算公式應(yīng)如下:
(n=0,1,2,3 .. 2N+3–1)
請(qǐng)注意,這將導(dǎo)致u(t)所含的采樣數(shù)多于g(t),u(t)的多個(gè)樣本可能與 f(x)和g(t)上的一個(gè)點(diǎn)對(duì)應(yīng),從而使u(t)和g(t)到f(x)的映射關(guān)系復(fù)雜化。 因此,必須對(duì)特定的樣本組求平均值,以便提供到f(x)的合理映射。 下面的偽代碼反映了所需的映射關(guān)系,其中假設(shè)使用一個(gè)N位DAC, g(t)有2N個(gè)點(diǎn),u(t)有2N+3個(gè)點(diǎn)。陣列DacXfr含有2N個(gè)元素,初始值均為0。執(zhí)行該代碼后,陣列DacXfr的元素包含歸一化的DAC傳遞函數(shù)。
n = 0
FOR i = 0 TO 2N–1
AvgCnt = 0
WHILE i = g[n]
AvgCnt = AvgCnt + 1
DacXfr[i] = DacXfr[i] + u[n]
n = n + 1
IF n >= 2N+3
EXIT WHILE
END IF
END WHILE
IF AvgCnt = 0
EXIT (fail because array, g[ ], is missing a DAC code)
END IF
DacXfr[i] = (DacXfr[i]/AvgCnt)/2N
END FOR
驗(yàn)證
為驗(yàn)證本文所述的方法,使用一臺(tái)頻譜分析儀來(lái)測(cè)量一個(gè)14位DAC 的輸出;該DAC由一個(gè)代表理想正弦波的輸入序列驅(qū)動(dòng)。記錄了前 14次諧波的幅值(2次到15次,單位dBc),并利用這些值重構(gòu)DAC傳 遞函數(shù)f(x)。然后,將理想正弦輸入序列g(shù)(t)代入重構(gòu)的DAC傳遞函數(shù) f(x)進(jìn)行模擬,產(chǎn)生一個(gè)輸出序列。一個(gè)FFT將u(t)轉(zhuǎn)換為頻域等效值 U(ω)。從U(ω)提取諧波幅值,并將其與頻譜分析儀的測(cè)量結(jié)果相比較, 如表1所示。請(qǐng)注意,與7次諧波相關(guān)的最大誤差僅為0.065 dB。
Table 1
由于比例關(guān)系,重構(gòu)傳遞函數(shù)的圖形呈現(xiàn)為一條直線(y=x)。事實(shí)上, 該傳遞函數(shù)與y=x的偏差足以產(chǎn)生表1所示的諧波成分。為幫助理解, 圖5僅顯示了該傳遞函數(shù)與理想直線的偏差。垂直軸的單位為L(zhǎng)SB。
圖5. DAC傳遞函數(shù)的殘差
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 模擬信號(hào)鏈的設(shè)計(jì)注意事項(xiàng)
- 熱烈祝賀 Andrew MENG 晉升為 ASEAN(東盟)市場(chǎng)經(jīng)理!
- 邁向更綠色的未來(lái):GaN技術(shù)的變革性影響
- 集成電阻分壓器如何提高電動(dòng)汽車的電池系統(tǒng)性能
- 帶硬件同步功能的以太網(wǎng) PHY 擴(kuò)大了汽車?yán)走_(dá)的覆蓋范圍
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
PLC
Premier Farnell
Recom
RF
RF/微波IC
RFID
rfid
RF連接器
RF模塊
RS
Rubycon
SATA連接器
SD連接器
SII
SIM卡連接器
SMT設(shè)備
SMU
SOC
SPANSION
SRAM
SSD
ST
ST-ERICSSON
Sunlord
SynQor
s端子線
Taiyo Yuden
TDK-EPC
TD-SCDMA功放
TD-SCDMA基帶