你的位置:首頁 > 傳感技術(shù) > 正文

MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)

發(fā)布時間:2018-10-29 責(zé)任編輯:wenwei

【導(dǎo)讀】10月18日消息,據(jù)麥姆斯咨詢報道,加拿大魁北克Universite de Sherbrooke(舍布魯克大學(xué))的研究人員已經(jīng)成功地在MEMS(微機(jī)電系統(tǒng))器件中設(shè)計了一種AI(人工智能)技術(shù),這標(biāo)志著MEMS器件中首次嵌入了某種類型的AI能力。其研究成果是一種類似于人類大腦的神經(jīng)計算,只不過是在微型器件中運(yùn)行。這項研究成果意味著可以在微型器件內(nèi)進(jìn)行AI數(shù)據(jù)處理,從而為邊緣計算創(chuàng)造了無限可能。
 
MEMS傳感器即微機(jī)電系統(tǒng)(Microelectro Mechanical Systems),是在微電子技術(shù)基礎(chǔ)上發(fā)展起來的多學(xué)科交叉的前沿研究領(lǐng)域。經(jīng)過四十多年的發(fā)展,已成為世界矚目的重大科技領(lǐng)域之一。它涉及電子、機(jī)械、材料、物理學(xué)、化學(xué)、生物學(xué)、醫(yī)學(xué)等多種學(xué)科與技術(shù),具有廣闊的應(yīng)用前景。
 
截止到2010年,全世界有大約600余家單位從事MEMS的研制和生產(chǎn)工作,已研制出包括微型壓力傳感器、加速度傳感器、微噴墨打印頭、數(shù)字微鏡顯示器在內(nèi)的幾百種產(chǎn)品,其中MEMS傳感器占相當(dāng)大的比例。MEMS傳感器是采用微電子和微機(jī)械加工技術(shù)制造出來的新型傳感器。與傳統(tǒng)的傳感器相比,它具有體積小、重量輕、成本低、功耗低、可靠性高、適于批量化生產(chǎn)、易于集成和實現(xiàn)智能化的特點。同時,在微米量級的特征尺寸使得它可以完成某些傳統(tǒng)機(jī)械傳感器所不能實現(xiàn)的功能。
 
MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)
單根硅橫梁(紅色)及其驅(qū)動(黃色)和讀出(綠色和藍(lán)色)電極,實現(xiàn)了能夠進(jìn)行非凡計算的MEMS器件
 
“我們?nèi)ツ暌呀?jīng)寫了一篇論文,從理論上展示了可以實現(xiàn)MEMS人工智能,”該研究論文的共同作者舍布魯克大學(xué)教授Julien Sylvestre介紹說,“我們最新的突破是展示了一種可以在實驗室中實現(xiàn)這一目標(biāo)的MEMS器件。”
 
該研究論文已發(fā)表于Journal of Applied Physics期刊,研究人員在他們的研究中展示了一種被稱為“儲備池計算”(reservoir computing)的AI方法。Sylvestre解釋說,要了解儲備池計算,需要了解一些關(guān)于人工神經(jīng)網(wǎng)絡(luò)如何運(yùn)行的知識。
 
人工神經(jīng)網(wǎng)絡(luò)是一種模仿大腦進(jìn)行信息處理的機(jī)器學(xué)習(xí)模型。前向神經(jīng)網(wǎng)絡(luò)適合處理靜態(tài)模式信息,而遞歸神經(jīng)網(wǎng)絡(luò)更適合處理動態(tài)模式信息。利用通過時間的反向傳播(BPTT)算法對遞歸神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練計算代價很大,訓(xùn)練過程緩慢。研究發(fā)現(xiàn),在利用 BPTT 算法訓(xùn)練遞歸神經(jīng)網(wǎng)絡(luò)過程中,輸入層和中間層的連接權(quán)變化緩慢,只有輸出連接權(quán)變化明顯。
 
受到這一發(fā)現(xiàn)的啟發(fā),2001年和2002年分別提出了回聲狀態(tài)網(wǎng)絡(luò)和液體狀態(tài)機(jī),隨后科研人員證明了回聲狀態(tài)網(wǎng)絡(luò)和液體狀態(tài)機(jī)本質(zhì)上一致,并概括為“儲備池計算”。
 
MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)
傳統(tǒng)儲備池計算示意圖
 
儲備池計算的核心思想就是利用一個儲備池代替?zhèn)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)中的中間層,輸入層到儲備池的輸入連接權(quán)和儲備池的內(nèi)部連接權(quán)均隨機(jī)生成并保持不變,訓(xùn)練過程中唯一需要確定的就是儲備池到輸出層的輸出連接權(quán)。儲備池計算大大簡化了遞歸神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程,并在信道均衡、時間序列預(yù)測、非線性系統(tǒng)建模、語音識別和自動控制等領(lǐng)域獲得了成功應(yīng)用。
 
儲備池計算最常用于依賴于時間的輸入(與圖像等靜態(tài)輸入相反)。因此,儲備池計算采用由時間相關(guān)輸入驅(qū)動的動力學(xué)系統(tǒng)。動力學(xué)系統(tǒng)選擇相對復(fù)雜,因此它對輸入的響應(yīng)可能與輸入本身完全不同。
 
此外,系統(tǒng)選擇具有多個自由度來響應(yīng)輸入。結(jié)果,輸入被“映射”到高維狀態(tài)空間,每個維度對應(yīng)于一個自由度。這產(chǎn)生了大量的信息“豐富性”,意味著輸入有許多不同的變換。
 
MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)
該系統(tǒng)的信號鏈和MEMS器件的SEM(掃描電子顯微鏡)圖像
 
“儲備池計算所使用的特殊技巧是線性地組合所有維度以獲得輸出,其輸出與我們希望計算機(jī)對給定輸入的答案相對應(yīng),”Sylvestre說,“這就是我們所說的儲備池計算‘訓(xùn)練’。這種線性組合的計算非常簡單,與其他AI方法不同,人們會嘗試修改動力學(xué)系統(tǒng)的內(nèi)部運(yùn)行以獲得所需要的輸出。”
 
在大多數(shù)儲備池計算系統(tǒng)中,其動力學(xué)系統(tǒng)是軟件。在這項研究中,其動力學(xué)系統(tǒng)就是MEMS器件本身。為了實現(xiàn)這種動力學(xué)系統(tǒng),這款MEMS器件利用了非常薄的硅梁在空間中振蕩的非線性動力學(xué)特性。這些振蕩產(chǎn)生一種神經(jīng)網(wǎng)絡(luò),將輸入信號轉(zhuǎn)換為神經(jīng)網(wǎng)絡(luò)計算所需的更高維空間。
 
Sylvestre解釋說,很難修改MEMS器件的內(nèi)在工作原理,但儲備池計算并不需要,這就是他們使用這種方案在MEMS中嵌入AI的原因。
 
“我們的研究表明,在MEMS器件中使用非線性源來嵌入AI是完全可能的,”Sylvestre說,“這是一種構(gòu)建‘人工智能’器件的新方向,它可以做得非常小且高效。”
 
據(jù)Sylvestre介紹,這種MEMS器件的處理能力很難與臺式計算機(jī)相比較。“計算機(jī)跟我們這款MEMS器件的工作方式截然不同,”他解釋說,“計算機(jī)很大并需要消耗大量功率(數(shù)十瓦),但我們的MEMS可以小到裝在人類頭發(fā)尖端上,并以微瓦級的功率運(yùn)行。并且,它們可以實現(xiàn)一些花式炫技的功能,比如對口語進(jìn)行分類,這項任務(wù)可能會占用臺式計算機(jī)10%的資源。”
 
MEMS新突破!加拿大成功地在MEMS器件中設(shè)計了一種AI技術(shù)
 
據(jù)Sylvestre表示,這種配備AI的MEMS技術(shù)的一個可能的應(yīng)用比如MEMS加速度計,加速度計收集的所有數(shù)據(jù)都可以在器件內(nèi)部進(jìn)行處理,而不需要將數(shù)據(jù)再發(fā)送回計算機(jī)。
 
研究人員尚未專注研究如何為這種嵌入AI的MEMS器件供電,但這些器件極低的功耗可使它們僅依賴能量采集器便能支持運(yùn)行,從而無需電池供電。有基于此,研究人員正在尋求將他們的AI MEMS方案應(yīng)用于傳感和機(jī)器人控制。
 
 
推薦閱讀:
 
“間諜芯片”引發(fā)供應(yīng)鏈危機(jī),中國如何應(yīng)對?
TI首席技術(shù)官Ahmad Bahai暢談合作型社會中的隔離技術(shù)
厚翼科技START方案適用于高階通訊開發(fā)應(yīng)用
厚翼科技2018年上半年累積許可協(xié)議數(shù)突破2017年合約總數(shù)
新思科技榮獲四項TSMC合作伙伴大獎
要采購傳感器么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉