【導讀】電流傳感器是一種電流檢測裝置,可以檢測被測電流的信息,按比例換算成符合標準的電壓或電流信號,以滿足信息的傳遞、處理、存儲、顯示、記錄和控制等要求。
分流器
即高精度電阻,作為常見的電流檢測元件,具有精度高,線性度好以及溫度穩(wěn)定性高的優(yōu)點,常用于小電流直流應用,對于交流應用需要與線性光耦搭配使用。分流器由于直接串聯(lián)于電路當中,具有插入損耗與發(fā)熱問題,因此大電流應用常采用非插入型產(chǎn)品方案。
電流互感器
利用原副邊匝比不同來進行電流信號檢測,只能作為交流信號的檢測,具有成本低,精度高,結(jié)構(gòu)簡單等優(yōu)點。
霍爾電流傳感器
霍爾效應是運動的帶電粒子在磁場中受洛侖磁力作用引起的偏轉(zhuǎn),這種偏轉(zhuǎn)導致在垂直電流和磁場的方向上產(chǎn)生正負電荷的積聚,從而形成橫向電場,將該電場進行信號放大處理即轉(zhuǎn)換為滿足標準的輸出所需信號。因此利用霍爾效應可以實現(xiàn)非接觸式電流檢測,具有無插入損耗、隔離式、檢測精度高、結(jié)構(gòu)電路簡單等優(yōu)點。
開環(huán)電流傳感器:將原邊電流產(chǎn)生的電磁信號轉(zhuǎn)化為電壓信號,通過放大器輸出,有貼片式產(chǎn)品作為小電流檢測,也有模塊式作為大電流檢測。
閉環(huán)電流傳感器:在磁芯上饒副邊線圈,在原邊有電流流過時,副邊線路電流產(chǎn)生的補償磁通與原邊電流Ip產(chǎn)生的磁通大小相等,方向相反,使得磁芯中磁通總量為零?;魻柶骷洼o助電路產(chǎn)生的副邊補償電流準確反映了原邊電流的大小,原副邊電流大小為線圈匝比關系。
閉環(huán)電流傳感器具有精度高、線性度好、磁失調(diào)小、動態(tài)性能好等優(yōu)點,成本相對較高,功率損耗大。
磁通門電流傳感器
與霍爾電流傳感器類似,都是通過檢測氣隙中磁通大小來檢測電流信號,只是氣隙中感應元件變?yōu)榇磐ㄩT探頭。
如下為幾種常用電流傳感器對比
磁阻電流傳感器
磁阻技術的發(fā)展,使得電流傳感器感應元件得到了進一步擴充,其中各向異性磁阻(AMR)、巨磁阻(GMR)以及隧道磁阻(TMR)技術的發(fā)展使得電流傳感器實現(xiàn)更高精度、更好溫度穩(wěn)定性以及更高帶寬,目前成品主要為貼片式電流檢測產(chǎn)品。
物質(zhì)在一定磁場下電阻改變的現(xiàn)象,稱為“磁阻效應”,磁性金屬和合金材料一般都有這種磁電阻現(xiàn)象,通常情況下,物質(zhì)的電阻率在磁場中僅產(chǎn)生輕微的減?。辉谀撤N條件下,電阻率減小的幅度相當大,比通常磁性金屬與合金材料的磁電阻值約高10余倍,稱為“巨磁阻效應”(GMR)。
隨著GMR效應研究的深入,TMR效應開始引起人們的重視。盡管金屬多層膜可以產(chǎn)生很高的GMR值,但強的反鐵磁耦合效應導致飽和場很高,磁場靈敏度很小,從而限制了GMR效應的實際應用。磁隧道結(jié)(MTJ s)中兩鐵磁層間不存在或基本不存在層間耦合,只需要一個很小的外磁場即可將其中一個鐵磁層的磁化方向反向,從而實現(xiàn)隧穿電阻的巨大變化,故MTJs較金屬多層膜具有高得多的磁場靈敏度。同時,MTJs這種結(jié)構(gòu)本身電阻率很高、能耗小、性能穩(wěn)定。因此,MTJs無論是作為讀出磁頭、各類傳感器,還是作為磁隨機存儲器(MRAM),都具有無與倫比的優(yōu)點,其應用前景十分看好,引起世界各研究小組的高度重視。
精度計算
電流傳感器最核心的參數(shù)即電流檢測精度,電流精度主要考慮線性度、零點以及零點溫漂,閉環(huán)產(chǎn)品增加一個增益誤差。
開環(huán)產(chǎn)品精度計算:
XG = εL + εVoe + εTCVoe
閉環(huán)產(chǎn)品精度計算:
XG = εL + εG + εIoe + εTCIoe
通常規(guī)格書給出的為額定電流下所對應的精度,所有誤差的算法,其中分母為當前測試電流所對應的值,因此以線性誤差為例,額定電流100A的電流傳感器,其線性誤差為1%,在實際電流10A時,其線性誤差達到了10%(1%*100/10),同理零點誤差與零點漂移誤差也隨之增大。
電流傳感器的小電流精度才是真正考驗傳感器的地方,因此為了滿足不同電流的精度需求,目前市面上有雙量程輸出的電流傳感器,以及霍爾電流傳感器與分流器組合方式,其中霍爾負責大電流,分流器負責小電流。磁阻技術的引入也增加了高精度需求的可選項。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀: